
⨁ =ji lk

A Sound and Complete Abstraction for
Reasoning about Parallel Prefix Sums

Nathan Chong, Alastair F. Donaldson, Jeroen Ketema  
Imperial College London

{nyc04, afd, j.ketema}@imperial.ac.uk

Prefix sums

are

building blocks
fundamental

for

data-parallel programs
“Lego DNA” by Michael Knowles is licensed under CC
BY 2.0 / Transparent background from original

The interval of summations is a novel abstraction for
reasoning about parallel prefix sums. With it, the
correctness of any generic prefix sum implementation
can be established by checking a single test case.

1. Prefix sums
!

The prefix sum for an associative binary
operator ⨁ takes [s1, s2, …, sn] and
returns [s1, s1 ⨁ s2, …, s1 ⨁ s2 ⨁ … ⨁ sn],
the list of all prefixes.

2. Examples and Utility
!

Prefix sums have been extensively
studied in hardware and parallel
software design for their utility in
applications such as carry-lookahead
adders, stream compaction, and
sorting algorithms.
!
Here are circuits for four  
well-known prefix sums:

Our paper and talk
!
Read our paper for theoretical and practical
results, which show the power and
utility of this custom abstraction.
!

Thursday 23rd January (Day 2)
Session 5b Reasoning 3’15pm
!
http://multicore.doc.ic.ac.uk/tools/GPUVerify/POPL14

This work was supported by the EU FP7 STREP project CARP
(project number 287767) and the EPSRC PSL project (EP/I006761/1).

1

Kogge-Stone Sklansky

Brent-Kung Blelloch

i l

3. The Interval of  
Summations
!
We observe that a prefix sum algorithm may
only exploit the property of associativity.
!

Abstract a concrete summation si ⨁ si+1 ⨁ … ⨁ sj by the abstract interval (i,j)
Define the sum of kissing intervals by (i,j) ⨁ (k,l) = (i,l) if j + 1 = k.
The sum of non-kissing intervals is ⊤.
!
!
!
!
This abstraction allows us to establish the correctness of any prefix sum by running the
implementation on the input [(1,1), (2,2) …, (n, n)] and checking that it computes the
output [(1,1), (1,2), …, (1, n)]. We then extend this result to a data-parallel setting.

http://imperial.ac.uk
http://multicore.doc.ic.ac.uk/tools/GPUVerify/POPL14
http://imperial.ac.uk
http://multicore.doc.ic.ac.uk/tools/GPUVerify/POPL14

