
We attack the problem of analysing data-
dependent GPU kernels, a tricky and
important class of GPU program. Our
work enables scalable analysis where
existing techniques cannot be applied and
where exhaustive symbolic execution is
oen infeasible.

Data-Dependent GPU Kernels
A GPU kernel is data-dependent if the input to the program can
change the data or control flow of the program. is class of
program is tricky for verification because the access paern of a
single thread may depend on the data or control flow of many
other threads.

Consider this Stream Compaction
kernel, which filters an input array.
In the compact stage the elements to
be kept are wrien contiguously to
the output array. e index for each
thread is computed using the
parallel prefix sum primitive.

is kernel is data-dependent since
the index wrien-to by a thread is
dependent on the flag result of all
‘preceding’ threads. is kernel
cannot be verified with existing tools.

Results
In our paper we give a formal semantics and proof of
soundness for barrier invariants. en, suitably equipped, we
give a functional correctness result for 3 different parallel
prefix sum algorithms, in order to ultimately prove race-
freedom for the Stream Compaction kernel. We show that our
approach allows us to scale to sizes (more than 32k threads)
that are infeasible for dynamic
symbolic execution techniques.

Our toolchain and experimental
evaluation are available as an
artifact.
hp://multicore.doc.ic.ac.uk/tools/
GPUVerify/OOPSLA13/

Summary
Barrier invariants are a new shared-state
abstraction that enable scalable analysis
of data-dependent GPU kernels.

References
[0] A. Bes, N. Chong, A. F. Donaldson, S. Qadeer, and P.
omson. GPUVerify: a verifier for GPU kernels. In OOPSLA,
pages 113–132, 2012.

[1] G. Li and G. Gopalakrishnan. Scalable SMT-based verification
of GPU kernel functions. In FSE, pages 187–196, 2010.

Talk details
Mobile & Graphics Track
1’30pm ursday 31st October 2013

Barrier Invariants: a Shared State Abstraction for
the Analysis of Data-Dependent GPU Kernels

Nathan Chong, Alastair F. Donaldson,
Paul H.J. Kelly, Jeroen Ketema

Imperial College London
{nyc04, afd, phjk, jketema}@imperial.ac.uk

Shaz Qadeer

Microso Research
qadeer@microso.com








 
 


 










 












 





e Problem
Existing verifiers, such as GPUVerify [0] and PUG [1], achieve
scalability by exploiting the following observation: if a kernel is
race-free for an arbitrary pair of threads then it must be race-free
for all possible pairs of threads. erefore, to establish race-
freedom it suffices to consider the behaviour of an arbitrary pair of
threads with an abstraction to over-approximate the behaviour of
other threads.

e simplest abstraction is to make no assumptions about the
behaviour of other threads: at each barrier we assume that shared
state is arbitrarily updated by seing the contents of shared state
nondeterministically. is abstraction is too coarse to correctly
reason about data-dependent GPU kernels: consider the contents
of the idx array in the Stream Compaction kernel, aer this
abstraction has been applied. e tool will report a false-positive.

Our Solution
Barrier invariants are a
new abstraction that
retain the scalability of
the two-thread
reduction, but allow
more precise reasoning
about shared state. e idea is to annotate a barrier with an
invariant that must hold every time the barrier is reached. e
property must hold for an arbitrary pair of threads. en, aer the
barrier, shared state is set to an arbitrary value that additionally
satisfies the barrier invariant.

In the case of the Stream Compaction kernel we can prove the
following barrier invariant about the compact stage:
 flag[s] ⋀ flag[t] → idx[s] ≠ idx[t] for all distinct threads s and t
which allows us to prove race-freedom for the whole kernel.

is work was supported by the EU FP7 STREP project CARP (project number 287767) and the EPSRC PSL project (EP/I006761/1).

A B C D E F G H

1 0 1 1 0 0 1 0

0 1 1 2 3 3 3 4

A B C D E F G H

A C D G

data

flag

idx

compact

out

Data-Dependent
Stream Compaction

http://multicore.doc.ic.ac.uk/tools/GPUVerify/OOPSLA13/
http://multicore.doc.ic.ac.uk/tools/GPUVerify/OOPSLA13/
http://multicore.doc.ic.ac.uk/tools/GPUVerify/OOPSLA13/
http://multicore.doc.ic.ac.uk/tools/GPUVerify/OOPSLA13/

