
     

GPUs are great. Graphics processing 
units (GPUs) pack hundreds of processing 
elements onto a single chip. They offer 
tremendous compute power at a low cost. 
Originally intended only for graphics 
computations, they also excel at such tasks as 
medical imaging, computational finance, and 
molecular simulation - often beating CPU 
performance by orders of magnitude. 

GPUs are complex. Modern CPUs 
run several threads concurrently, and give 
each access to a shared memory. GPUs are 
more structured. Each thread is run on a 
processing element (PE), each of which has 
its own private memory. These PEs are 
organised into several compute units (CUs), 
each of which has its own local memory. The 
collection of threads running on one CU is 
called a workgroup. The device also maintains 
a global memory.

Programming GPUs is hard. 
Programming models such as OpenCL and 
CUDA allow programmers to harness the 
power of GPUs. Besides the complexities of 
GPU hardware discussed above, these 
languages also provide a variety of 
instructions – such as barriers, atomic 
operations, and fences – that enable expert 
programmers to ensure that high-performance 
code behaves correctly. The programmer 
must choose, for each instruction, whether to 
apply it to the local memory or the global 
memory, and whether to propagate its effects 
to the whole device or only within the current 
CU. The opportunities for confusion are 
almost endless.

The memory 
model is 
supposed to 
help... GPU 
programming 
languages such as 
OpenCL and CUDA 
provide a memory 
model. This is 
intended to be a 
precise description of 
how the GPU’s 
various memories 
store and load values, 
and how the 
programmer can write 
‘good’ programs that 
avoid certain problems 
like data races.

...but it’s not 
good enough. 
These memory 
models are described 
in prose. Although 
they are very detailed, 
they ultimately suffer 
from ambiguities, 
contradictions and 
omissions, like all 
natural language 
texts. How can 
programmers be 
confident about the 
behaviour of their 
programs when the 
standard is so vague?

Our aim is to 
translate 
several GPU 
memory 
models into the 
rigorous 
language of 
mathematics. 

We will... 
• develop a generic framework for GPU 

memory models, and build two 
instantiations of it: one for NVIDIA’s low-
level PTX language and one for the 
higher-level OpenCL 2.0 language;

• write our models using a modelling 
language such as Herd or Lem;

• test our models by simulating the 
execution of some small programs, and 
then refine the models if the results do 
not agree with the prose;

• ask the authors of the standards for 
clarification when ambiguities arise;

• when designing our PTX model, run 
experiments to see how the real NVIDIA 
hardware behaves; and

• evaluate the soundness of our OpenCL 
model by devising an OpenCL-to-PTX 
translator, and then confirming that 
OpenCL programs deemed ‘good’ in our 
OpenCL model are always translated to 
PTX programs deemed ‘good’ in our PTX 
model.

What do these programs do?
When designing our mathematical models, 
we study the behaviour of small programs 
called litmus tests. Here are two. In the first, 
which final values of x and y are possible?

global atomic x=0, local atomic y=0;

// THREAD 1:
int t = load(&x,acquire);
store(&y,t,release);

// THREAD 2 (in same workgroup):
int u = load(&y, acquire);
store(&x,u,release);

In the second, can t end up 0?

global atomic x=0, global atomic y=0;

// THREAD 1:
store(&x,1,relaxed,workgroup);
store(&y,1,release,device);

// THREAD 2 (in different workgroup):
if (load(&y,acquire,device)==1)
 int t=load(&x,relaxed,workgroup);

PE... ...

global memory

CU

GPU

local memoryprivate memory

John Wickerson 1 / Tyler Sorensen 2,3 / Daniel Poetzl 2,4 / Mark Batty 5 / Jade Alglave 2 / Alastair Donaldson 1
1 Imperial College London / 2 University College London / 3 University of Utah / 4 University of Oxford / 5 University of Cambridge

Formalising GPU memory models

We acknowledge financial support from the EPSRC, the CARP FP7 project, ...We acknowledge financial support from the EPSRC and the CARP FP7 project.


