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1 Executive Summary
This deliverable reports the status of verification efforts in the CARP project related to the
PENCIL intermediate language of WP3, to the OpenCL programming model for heterogeneous
many-core platforms, and to the process of transforming PENCIL programs into OpenCL code
using the compilation tools of WP4. Specifically we report full details of the PENCIL verification
method that was outlined in Deliverable D6.1, and present an update on tooling issues related to
the verification method for OpenCL using permission-based separation logic introduced in D6.2.
We describe the use of GPUVerify for proving race-freedom of OpenCL code generated by the
PENCIL→OpenCL compiler of WP4. We then discuss two advancements in analysis methods
for OpenCL kernels: a technique for further automating verification via kernel interception, and
a novel method for automatically proving that OpenCL kernels terminate.
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2 Introduction
This deliverable summarises the progress of the CARP research work into verification methods
for accelerator programming. Specifically we update on techniques outlined in Deliverable D6.1
for analysing programs written in the PENCIL intermediate language of WP3, and methods
detailed in Deliverable D6.2 for verifying basic and functional properties of OpenCL kernels.
We also study the interface between these two languages: the compilation tools of WP4 that
translate PENCIL programs into optimised OpenCL code. Our contribution regarding this
interface is a method for checking that compiled code is free from data races by combining
the strengths of the GPUVerify verification method with domain knowledge available from the
PENCIL→OpenCL compiler.

Verification methods based on program logic. Chapters 3 and 4 of this deliverable deal with
the verification of PENCIL and OpenCL kernels using program logic.

Chapter 3 is on the specification and verification of parallel loops, and extends the work in
Deliverable D6.1 by giving a formal definition of the correctness claims of the method and by
proving that they hold. Moreover, the chapter reports on how a new verification backend was
integrated into the tool that verifies the specified programs.

Chapter 4 on OpenCL kernel verification focuses on how a parallel loop can be translated to
a kernel. This translation preserves not only the computational results, but also the specifications
attached to the code. In order to do this, we introduce a variant of the specification method for
kernels introduced in Deliverable D6.2. We discuss the difference between the old and the new
method.

In both chapters 3 and 4 we include many examples of specified programs that have been
verified with the tool.

Translation validation for PENCIL→OpenCL compilation Chapter 5 is devoted to a dis-
cussion of how we have conducted translation validation for the PENCIL→OpenCL compiler
of WP4. Our initial strategy here was to simply use GPUVerify to prove data race-freedom
for the kernels emitted by the compiler. We found that in practice these kernels can be very
complex and go beyond what GPUVerify can cope with fully automatically. To overcome this,
we have improved the invariant inference capabilities of GPUVerify so that it can cope with
many basic properties of these kernels, and we have worked with the compiler team at ENS to
extend the PENCIL→OpenCL compiler to emit invariants characterising the access patterns of
kernels. These invariants would be very difficult to speculate post-hoc, but are readily available
from domain-specific knowledge inside the compiler. We demonstrate that this combination of
strengths allows highly automated race-freedom proofs for a set of stencil kernels.

Advancements in automatic OpenCL kernel analysis Chapters 6 and 7 describe two ad-
vances to the automated methods for OpenCL kernel analysis proposed in Deliverable D6.2.

Chapter 6 describes KernelInterceptor, an add-on to the GPUVerify tool that reduces the
need for users to annotate their kernels with preconditions by intercepting running OpenCL
applications and taking a snapshot at each kernel entry point. From a run of an OpenCL
application, KernelInterceptor produces a set of automatically annotated kernels which can be
verified offline by GPUVerify. The method was presented at the 2014 International Workshop
on OpenCL [5].
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Chapter 7 describes a technique for automatically proving that GPU kernels terminate.
Termination is an essential property for a GPU kernel, since under current programming models
there is no standard manner by which a kernel can communicate partial results to the host
application during execution. We present a theorem inspired by the two-thread reduction of
GPUVerify (see Deliverable D6.2) showing that termination analysis can be performed soundly
with respect to a “one-thread reduction”. This leads to a scalable method for proving termination
that is effective for data-independent kernels; we present an evaluation using a set of 598
OpenCL and CUDA examples. This work was presented at the 2014 International Workshop on
Termination [36].
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3 Update on PENCIL Verification
In Deliverable D6.1 a program logic was introduced for parallel loops with dependences. In this
chapter, we present a formal semantics for this logic and we explain how a checker for this logic
has been implemented in the VerCors tool [9].

3.1 Background

This section briefly recalls some background on the theory of loop dependences and separation
logic.

3.1.1 Loop Dependences

For a single loop with multiple statements, several types of loop dependences can be identified.
There exists a dependence from statement Ssrc to statement Ssink in the body of a loop if there
exist two iterations i and j of that loop, such that:

• Iteration i is before iteration j, i.e., i≤ j.

• If the iterations are the same (i = j) then Ssrc must syntactically occur before Ssink.

• Statement Ssrc on iteration i and statement Ssink on iteration j access the same memory
location.

• At least one of these accesses is a write.

The distance of a dependence is defined as the difference between j and i.
Loop dependences with distance 0, i.e., when i= j, are called loop independent dependences.

These dependences only have to be considered when the loop body has to be transformed, which
is out of the scope of this deliverable.

Loop dependences with a positive distance are called loop-carried dependences and are
classified into forward and backward dependences. When Ssrc syntactically appears before Ssink
(or if they are the same statement) there is a forward loop-carried dependence and when Ssink
syntactically appears before Ssrc there is a backward loop-carried dependence. The following
examples illustrate forward and backward loop-carried dependences.

Example 3.1.1 (Forward Loop Dependence).

for(int i=0;i<N;i++){
S1: a[i] = b[i] + 1;
S2: if(i>0) c[i] = a[i−1] + 2;

}

iteration = 1
S1: a[1] = b[1]+ 1;
S2: c[1] = a[0] + 2;

iteration = 2
S1: a[2] = b[2] + 1;
S2: c[2] = a[1] + 2;

Here, S1 is the source of the dependence and S2 is the sink. The ith element of the array a is
shared between iteration i and i−1, as visualised by the first and second iteration (on the right).
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Example 3.1.2 (Backward Loop Dependence).

for(int i=0;i<N;i++){
S1: a[i] = b[i] + 1;
S2: if(i<N−1) c[i] = a[i+1] + 2;

}

iteration = 1
S1: a[1] = b[1] + 1;
S2: c[1] = a[2] + 2;

iteration = 2
S1: a[2] = b[2] + 1;
S2: c[2] = a[3] + 2;

Here, the sink of the dependence (S2) appears before the source (S1) in the body of the loop.
Therefore this is a backward loop-carried dependence.

The distinction between forward and backward dependences is important. Independent
parallel execution of a loop with dependences is in general unsafe, because it may change the
result. For loops with forward dependences only, vectorisation may be applied (see section 3.3.1
for details).

3.1.2 Separation Logic.

Separation logic is described in detail in Chapter 5 of Deliverable D6.2 as a way to reason about
OpenCL kernels. However, for the sake of completeness, we give a brief introduction here.

Separation logic [48] was originally developed as an extension of Hoare logic [31] to reason
about programs with pointers, as it allows to reason explicitly about the heap. In classical Hoare
logic, assertions are properties over the state and no distinction between variables on the heap
and variables on the stack is made, while in separation logic, the state is explicitly divided in the
heap and a store related to the stack frame of the current method call. Separation logic is also
suited to reason modularly about concurrent programs [45]: two threads that operate on disjoint
parts of the heap do not interfere, and thus can be verified in isolation.

However, classical separation logic requires use of mutual exclusion mechanisms for all
shared locations, and it forbids simultaneous reads to shared locations. To overcome this,
Bornat et al. [11] extended separation logic with fractional permissions. Permissions, originally
introduced by Boyland [12], denote access rights to a shared location. A full permission 1
denotes a write permission, whereas any fraction in the interval (0,1) denotes a read permission.
Permissions can be split and combined, thus a write permission can be split into multiple read
permissions, and all of the read permissions can be joined into a write permission. In this way,
data race freedom of programs using different synchronisation mechanisms can be proven. The
set of permissions that a thread holds are known as its resources.

We write access permissions as Perm(e,π), where e is an expression denoting a memory
location and π is a fraction.

In separation logic there are two conjunction operators: Boolean conjunction (&&) and
separating conjunction (∗∗). The latter is resource sensitive, the former is not. For example

Perm(x, π) && Perm(x, π) ≡ Perm(x, π)
Perm(x, π) ∗∗ Perm(x, π) ≡ Perm(x, 2 ·π)

To specify properties of the value stored at a location we just reference the location in
our formulas. To ensure well-definedness of our formulas, we are forced to check that every
expression is self-framed, i.e., we need to check that only locations are accessed for which we
have access permissions. This is different from traditional separation logic, which uses the
PointsTo primitive that has an additional argument to denote the value stored at the location
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1 for(int i=0;i<N;i++) /∗@
2 requires Perm(a[i],1) ∗∗ Perm(c[i],1) ∗∗ Perm(b[i],1/2);
3 ensures Perm(a[i],1) ∗∗ Perm(c[i],1) ∗∗ Perm(b[i],1/2);
4 @∗/ {
5 a[i] = b[i] + 1;
6 c[i] = a[i] + 2;
7 }

Listing 1: Specification of an Independent Loop

and cannot refer to the location otherwise. However, it has been proven that both logics are
equivalent [47].

3.2 A Specification Method for Parallel Loops

In this section, we present a refined version of the specification method for parallel loops with
dependences.

3.2.1 Approach

The classical way to specify the effect of a loop is by means of an invariant that has to hold
before and after the execution of each iteration in the loop. Unfortunately, this offers no insight
into possible parallel executions of the loop. Instead we will consider every iteration of the loop
in isolation. To be able to handle dependences, we specify restrictions on how the execution
of the statements for each iteration is scheduled. In particular, each iteration is specified by
its own contract, i.e., its iteration contract. In the iteration contract, the precondition specifies
resources that a particular iteration requires and the postcondition specifies the resources which
are released after the execution of the iteration. In other words, we treat each iteration as a
specified block [29].

Listing 1 gives an example of an independent loop, specified by its iteration contract. The
contract requires that at the start of iteration i, permission to write both c[i] and a[i] is available,
as well as permission to read b[i]. The contract also ensures that these permissions are returned
at the end of iteration i. The iteration contract implicitly requires that the separating conjunction
of all iteration preconditions holds before the first iteration of the loop, and that the separating
conjunction of all iteration postconditions holds after the last iteration of the loop. In Listing 1,
the loop iterates from 0 to N− 1, so the contract implies that before the loop, permission to
write the first N elements of both a and c must be available, as well as permission to read the
first N elements of b. The same permissions are ensured to be available after termination of the
the loop.

To specify dependent loops, we need the additional ability to specify what happens when
the computations have to synchronise due to a dependence. During such a synchronisation,
permissions should be transferred from the iteration containing the source of a dependence
to the iteration containing the sink of that dependence. To specify a permission transfer we
introduce two keywords: send and recv:

//@ LS: send φ to LR, d;
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1 for(int i=0;i < N;i++) /∗@
2 requires Perm(a[i],1) ∗∗ Perm(b[i],1/2) ∗∗ Perm(c[i],1);
3 ensures Perm(a[i],1/2) ∗∗ Perm(b[i],1/2) ∗∗ Perm(c[i],1);
4 ensures (i>0 ==> Perm(a[i−1],1/2)) ∗∗ (i==N−1 ==> Perm(a[i],1/2));
5 @∗/ {
6 a[i]=b[i]+1;
7 /∗@
8 S1:if (i< N−1) {
9 send Perm(a[i],1/2) to S2,1;

10 }
11 @∗/
12 S2:if (i>0) {
13 //@ recv Perm(a[i−1],1/2) from S1,1;
14 c[i]=a[i−1]+2;
15 }
16 }

Listing 2: Specification of a Forward Loop-Carried Dependence

//@ LR: recv ψ from LS, d;

The send specifies that (at label LS) the permissions and properties expressed by the separation
logic formula φ are transferred to the statement labelled LR in the iteration i+d, where i is the
current iteration and d is the distance of dependence. The recv specifies that they are received
in the form of the formula ψ .

The send and recv keywords can be used to specify loops with both forward and backward
dependences. For example, in Listing 2 we show how our example of a loop with a forward
dependence can be annotated with an iteration contract. Listing 3 displays an iteration contract
for the backwards dependence example.

We discuss the annotations of the first program in some detail. Each iteration i starts with
write permission on a[i] and c[i] as well as read ( 1

2 ) permission on b[i] The first statement is a
write to a[i], which needs write permission. The value written is computed from b[i] for which
read permission is needed. The second real statement reads a[i−1], which is not allowed unless
read permission is available. This statement is not executed in the first iteration, where this read
permission cannot be made available because it refers to a non-existing item of the array. For
all subsequent iterations, permission must be transferred. Hence a send annotation is specified
after the first assignment that transfers a read permission on a[i] to the next iteration (and in
addition, keeps a read permission itself). The postcondition of the iteration contract reflects this:
it ensures that the original permission on c[i] is released, as well as the read permission on a[i],
which was not sent, and also the read permission on a[i−1], which was received. Finally, since
the last iteration cannot transfer a read permission on a[i], the iteration contract’s postcondition
also specifies that the last iteration returns this non-transferred read permission on a[i].

The specifications in both listings are valid. Hence every execution order of the loop bodies
that respects the order implied by the send annotations yields the same result as sequential
execution. In the case of the forward dependence example, this can be achieved by adding
appropriate synchronisation in the parallelised code. All parallel iterations should synchronise
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1 /∗@
2 requires Perm(a[i],1/2) ∗∗ Perm(b[i],1/2) ∗∗ Perm(c[i],1);
3 requires (i==0 ==> Perm(a[i],1/2)) ∗∗ (i < N−1 ==> Perm(a[i+1],1/2));
4 ensures Perm(a[i],1/2) ∗∗ Perm(a[i],1/2) ∗∗ Perm(b[i],1/2) ∗∗ Perm(c[i],1);
5 @∗/
6 {
7 /∗@
8 S1:if (i>0) {
9 recv Perm(a[i],1/2) from S2,1;

10 }
11 @∗/
12 a[i]=b[i]+1;
13 S2:if (i < N−1) {
14 c[i]=a[i+1]+2;
15 //@ send Perm(a[i+1],1/2) to S1,1;
16 }
17 }
18 }

Listing 3: Specification of a Backward Loop-Carried Dependence

each send annotation with the location of the specified label to ensure proper permission transfer.
For the backward dependence example, only sequential execution respects the ordering.

3.2.2 Proof Rules and Obligations.

In order to be able to properly define the rules for writing valid specifications with send and
recv as well as to define and prove properties about their semantics, we restrict the kind of loop
that we consider to be a non-nested for-loop with K statements that is executed for N iterations.
Each of the K statements Sk consists of a block of statements Bk, which is executed if a guard gk
is true. These guards must be expressions that are constant with respect to the execution of the
loop iterations. That is, they may not contain any variable that is assigned to in any iteration.

The generic form of loop that we consider is:

for(int i=0;i < N;i++){
S1: if (g1) { B1 }

...
SK : if (gK) { BK }

}

Where the iteration variable i cannot be assigned anywhere in the loop body.
Formally, each block Bk consist of a single atomically executable statement. However,

any block Bk with either at most one recv at the beginning or at most one send at the end
and an arbitrary number of atomic program statements is accepted as syntactic sugar. Given a
block with multiple statements, we can replace the single guarded statement by several guarded
statements by copying the guards. The single recv or send would inherit the original statement
label, while any others would get a new label. Of course, labels which are not used can be

CARP-ICL-RP-009-v1.4 13 7 August 2014



CARP

omitted. Similarly, the if(true) prefixes for a statement that is executed in each iteration is
superfluous.

The classical rule for a while loop with an invariant requires that the invariant holds before
the loop and ensures that both the invariant and the negation of the loop condition holds
afterwards. When a loop is specified with an iteration contract then the requirements are derived
form the iteration contract as follows: Before entering the loop, the separating conjunction
of the preconditions of all iteration contracts should hold. Afterwards, the conjunction of all
post-conditions is ensured:

{P(i)} body(i) {Q(i)} for i = 0 · · ·N−1
{FN−1

i=0 P(i)} for(int i=0;i<N;i++) req P(i) ens Q(i) { body(i) } {FN−1
i=0 Q(i)}

Note that this rule for a loop with an iteration contract is a special case of the rule for parallel
execution, which allows arbitrary blocks of code to execute in parallel. (See for example [46].)

The rules for the send and recv are similar to those for unlock and lock, respectively. (See
for example [28].) This is because the send is used to give up (unlock) resources that the recv
acquires (locks). This behaviour is captured in the following two rules:

{P} send P to L,d {true} {true} recv P from L,d {P}

To prevent the recv from creating resources that don’t exist, the send and receive statements
must occur in matched pairs. That is if block (Bs) ends with the statement

send φ(i) to Ss, d;

then block Br should start with a receive statement

recv ψ(i) from Sr, d;

and the following two requirements should hold. First, if the receive is enabled then d iterations
earlier, the send should be enabled:

∀i ∈ [0, · · · ,N).gr(i) =⇒ i≥ d∧gs(i−d) . (3.1)

Second, the information and resources received should be implied by those sent:

∀i ∈ [d, · · · ,N).φ(i−d) =⇒ ψ(i) . (3.2)

In the next section, we will consider what properties are guaranteed by a valid specification.

3.3 Proof of Correctness

We will consider three execution paradigms for loops: parallelisable, vectorisable, and sequential.
To help the compiler to know to which of these paradigms a particular loop belongs, the
programmer may add some loop annotations. In PENCIL, there are independent and ivdep
annotations for parallelisable and vectorisable loops respectively and the absence of annotation
means that the loops should be executed sequentially.

To verify the correctness of loop annotations written by a programmer, we use the iteration
contracts discussed above. Each class of loop-carried dependencies is matched to a specific
execution paradigm. In particular, independent loops, forward and backward loop-carried
dependence loops are executable in parallel, vectorised and sequential fashions respectively.
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In addition to verification of annotations, our specification language is able to specify the
functional behaviour of each iteration separately. Based on these specifications, we are also able
to reason about the functional correctness of the specified loop.

In this section, first we define the semantics of three real loop execution paradigms: sequen-
tial, vectorised, and parallel. Second, we explain the virtual semantics of the loop which is
specified by our specification language. Then we show that the specified loop is data-race free
and its functional behaviour is equivalent to the sequential execution. Finally, we prove that a
parallelised or a vectorised execution of a particular loop is data-race free if its semantics is
derivable from the semantics of the specified loop. This is sufficient to show that vectorised and
parallelised loops are data-race free and they preserve the functional behaviour of sequential
loops.

3.3.1 Parallel Execution of Loops

The simplest way of parallelising a loop is to simply execute all of its iterations in parallel.
To allow the compiler to generate this kind of code for a program, the PENCIL language can
annotate a loop with an independent pragma. We will denote a parallel loop by writing parfor
instead of just for. We will prove later that parallel execution is correct if the body of the
specified loop contains no send or recv statements.

Another way of speeding up computations is to exploit the vector capabilities of hardware.
Many processors and co-processors, especially GPUs, can compute with vectors of values
instead of with single values. Thus, they can efficiently execute a single statement from several
adjacent iterations in parallel. To allow the compiler to generate this kind of code for a program,
the PENCIL language can annotate a loop with an ivdep pragma. We abstract away from
the exact details of how this compilation is done, by considering vectorisation as a program
transformation.

Given a loop with N iterations and a divisor V of N, we define the V -vectorisation of our
loop as follows:

for(int i=0;i < N;i+=V){
parfor(int v=0;v<V;v++) S1(i+ v);

...
parfor(int v=0;v<V;v++) SK(i+ v);

}

We will prove that if in the specified program every send statement occurs before the matching
receive then for any V , vectorisation of the loop is a correct implementation of that loop. Before
discussing the proofs, we will first introduce some notation.

3.3.2 Semantics of Parallel Execution of Loops

Throughout, we assume that every statement is executed atomically. To keep our theory modular,
we split the semantics of a program into two layers. The upper layer determines which sequences
of atomic statements, called computations, a program can make and the second layer defines the
effect of each atomic statement. We will not go into the details of the lower layer here because
we do not deviate from the standard definitions.

Given our standard loop
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for(int i=0;i < N;i++){
S1: if (g1) { B1 }

...
Sk: if (gk) { Bk }

}

Si is defined as an indivisible guarded block of code. Each statement instance is defined as an
instantiation of a statement in the loop body in a particular loop iteration. For instance, S j

i is an
instantiation of Si in the jth iteration of loop. The semantics of a statement instance JS j

i K in the
above loop is defined as the atomic execution of the statements in the block of code labelled by
S j

i respecting the evaluation of its guard condition.
The sequential semantics of a program is going to be a single sequence. The semantics of

the various parallel execution methods will be sets of computations. To define those sets, we
will need to introduce some auxiliary operators: Concatenation and Interleaving.

The concatenation of two sets of computation is denoted by ++:

C1 ++C2 = {c1 · c2 | c1 ∈C1,c2 ∈C2}

The concatenation of multiple sets can be written using the following notation:

ConcatN
i=1Ci =C1 ++ · · ·++CN

To weave several sequences into a set of interleaved sequences, we will use an interleaving
operator. We parameterise this definition with a happens before relation <, in order to limit
the result to sequences in which steps that are supposed to happen before other steps cannot
occur in the wrong order. To define the interleaving operator (Interleave<), we use an auxiliary
operator1 that denotes interleaving with a fixed first step (Interleavei

<):

Interleave<(c1, · · · ,cn) =
⋃n

i=1 Interleave
i
<(c1, · · · ,cn)

Interleavei
<(ε, · · · ,ε) = {ε}

Interleavei
<(c1, · · ·ε · · · ,cn) = /0

Interleavei
<(c1, · · ·si ci · · · ,cn) = /0 , if ∃s ∈ (

⋃n
i=1 ci).s < si

Interleavei
<(c1, · · ·si ci · · · ,cn) = {si · s | s ∈ Interleave<(c1, · · ·ci · · · ,cn)} , otherwise

where ε is the empty computation. Again, we have sum-like notation for interleaving N
computations:

Interleavei=1..N
< ci = Interleave<(c1, · · · ,cn)

The most important property that we want to prove is that all of our parallelisations are
data-race free. To prove that, we must first define what it means for a computation to be data-race
free. To do so, we need to know for every atomic step (t), which locations in memory it writes
(write(t)), which locations in memory it reads (read(t)) and by which thread it is executed
(thread(t)). We define the set of accessed locations as access(t) = write(t)∪ read(t).

To make the definition easier, we assume that the natural program order is included in the
happens before relation, which is a quasi order. We can then define a race condition in a trace
as a pair or statements that both access a location and are not ordered by the happens before
relation:

1The idea came from the axiomatisation of the merge operator in process algebra using the left merge operator.
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Definition 3.3.1. A computation contains a data-race, if it contains two steps s and t, such that

write(s)∩access(t) 6= /0∧¬(s≤ t ∨ t ≥ s)

Besides reasoning about data-race freeness, we will also reason about the end result of a
computation. We do so based on the fact that swapping adjacent independent statements does
not change the end result.

Proposition 3.3.1. Swapping two adjacent statements in a data-race free computation, which
are unordered in the happens before relation does not change the outcome of the computation.

Proof. Because the statements are unordered and the computation is data race free, the set of
locations written by each of the actions cannot affect the set of locations accessed by the other.
Hence neither step can see the effect of the other.

Similarly, we can ignore steps that do not change the state. A good approximation of the
set of steps that change the state is the set of steps that write to at least one location. Thus, we
define two computations to be functionally equivalent if they perform the same writing steps in
the same order.

Definition 3.3.2. Given two computations c1 and c2. The computations c1 and c2 are function-
ally equivalent if mods(c1) =mods(c2), where

mods(c) =


ε , if c = ε

mods(c′) , if c = t · c′∧write(t) = /0
t ·mods(c′), if c = t · c′∧write(t) 6= /0

To prevent data races, computations must be synchronised. We employ the following four
synchronisation steps between the host thread and the worker threads that extend the happens
before relation:

fork Host thread computations happen before any computation in any worker thread.

join Worker thread computations happen before host thread computations.

barrier Every worker thread must reach this statement before the first one continues.

send/recv For every matching pair of send and recv, the send statement happens before the
recv statement.

We consider two happens before orders: program order (PO), which maintains the order of
statements plus the order of fork, join and barrier statement between threads, and specification
order (SO), which extends programs order by also enforcing the ordering of the send and recv
pairs.

Based on the auxiliary operators of Concat and Interleave, we are able to define the seman-
tics of the four different loop executions that we consider in this deliverable. The sequential
order simply executes all steps sequentially, the parallel order allows any interleaving that
preserves program order within the loop bodies and vectorisation executes multiple iterations in
lockstep:

Definition 3.3.3. Given a loop in standard form: Loop. Let S j
i be the instance of Si in the jth

iteration.
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• The semantics of sequential execution is

JLoopKSeq = ConcatN−1
j=0 Concat

k
i=0JS j

i K

• The semantics of vectorised execution for vector length V is defined as

JLoopKVec(V ) = Concat
(N/V )−1
j=0 Concatk

i=0

(
fork j

i

(
Interleave0..v−1

/0 JS j
i K
)
join j

i

)
• The semantics of parallel execution is

JLoopKPar = fork
(
Interleave0..N−1

PO Concatk
i=0JS j

i K
)
join

• The semantics of specified execution is

JLoopKSpec = fork
(
Interleave0..N−1

SO Concatk
i=0JS j

i K
)
join

3.3.3 Correctness of Parallel Loops

The key invariants of programs with separation logic specifications are that non-zero permission
is held if a read occurs, permission 1 is held if a write occurs and at no time do all of the threads
together hold more than permission 1 on a location. Because every send has to happen before the
matching recv this invariant is maintained in the specification order. Thus, every specification
order computation is data-race free and has the same result as the sequential computation.

Theorem 3.3.2. Given a loop with a valid specification.

1. All computation in JLoopKSpec are data-race free.

2. All computations in JLoopKSpec and JLoopKSeq are functionally equivalent.

Proof. 1. Because there is a valid specification, we know that for every location the sum
over all threads of the permissions held for that location cannot exceed 1. The only way
to lose permissions is a send and the only way to gain them is a recv. Those statements
have to happen in that order due to the happens before relation.

Suppose that there are two unordered statements s and t where one writes a location and
the other accesses the same location. Then because the specification is valid the thread
that executes s has permission 1 and the other thread has permission p > 0. So the sum
over all threads is at least 1+ p. Contradiction.

2. We must prove that every computation in JLoopKSpec is functionally equivalent to the
single computation JLoopKSeq.
First, the sequential order is one of the orders allowed in the specification order and is
functionally equivalent with itself.
Thus, we need to show that all computations in JLoopKSpec are mutually equivalent. We
do so by showing that given any computation, we can reorder it by swapping independent
statements to yields the sequential order, which preserves the end result due to proposition
3.3.1.
Assume that the first n steps of the given computation are in the same order as the
sequential computation. Then step tn+1 in the sequential has to be at a certain position in
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the given sequence. Because each sequence contains the same steps and the sequential
computation is in happens before order, all of the steps that have to happen before tn+1 are
already included in the prefix. Hence, step tn+1 is independent of all of the steps after the
prefix and before itself in the given sequence and can be swapped with them one-by-one
until it is the next step. This grows the number of steps in the sequential order prefix by 1,
so we can repeat this.
Thus every computation can be reordered until it matches the sequential order.

An immediate corollary is that loops that can be specified without synchronisation are
correct too.

Corollary 3.3.3. Given a loop with a valid specification, that does not make use of send or
recv.

1. All computation in JLoopKPar are data-race free.

2. All computations in JLoopKPar and JLoopKSeq are functionally equivalent.

Proof. If the specification does not make use of send or recv then program order coincides with
specification order and the result follows from Theorem 3.3.2.

This proof was easy because the set of parallel order executions was identical to the set of
specification order computations. If the specifications use send and recv then some parallel
execution order may contain data races. But if the send occurs before the matching recv in the
loop then vectorisation is possible.

Theorem 3.3.4. Given a loop with a valid specification, such that every send occurs before the
matching recv in the body, and V that divides N.

1. All computations in JLoopKVec(V ) are data-race free.

2. All computations in JLoopKVec(V ) and JLoopKSeq are functionally equivalent.

Proof. Because every send occurs before the matching recv, every computation that may occur
in JLoopKVec(V ) can also occur in JLoopKSpec. That is, we can construct a specification order
sequence in which the computational steps occur in the same order and in which the happens-
before relation on the vectorised sequence are more restrictive than those in the specification
order sequence. Hence all vectorised sequences are data-race free because all specification
order sequences are data-race free (Theorem 3.3.2). Moreover, every vectorised computation
is functionally equivalent to a specification order sequence and thus functionally equivalent to
JLoopKSeq (Theorem 3.3.2).

This completes the proofs of correctness. We continue with a discussion of the implementa-
tion.
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Figure 3.1: Overall architecture VerCors tool set

3.4 Tool Support

This section discusses how our logic for the functional verification of parallel loops, outlined
in section 3.2, is implemented in the VerCors tool set. It can be tried online at at http:
//www.utwente.nl/vercors. The VerCors tool was originally developed as a tool to reason
about multi-threaded Java programs, but it has been extended in order to be able to reason
about OpenCL kernels [10] and parallel loops [8]. It encodes programs in several program
transformation steps into simpler programs in either Chalice [38] or in Silver [34]. Figure 3.1
sketches the overall architecture of the tool set.

Chalice is a verifier for an idealised multi-threaded programming language, using permission-
based separation logic as a specification language. Chalice in turn gives rise to an encoding in
Boogie [6], which gives rise to SMT-compliant proof obligations.

Silver is the intermediate language used for the Viper project [34, 13]. The project maintains
two verifiers: Carbon [30], which like Chalice employs verification condition generation and
Silicon [35], which like VeriFast [33] employs symbolic execution.

The verifier that is used for the parallel loop specifications is the Silicon verifier which can
support quantified permissions on arrays. This support is limited to array permissions of the
form

(\forall∗ int i; low <= i && i < high ; Perm(array[i],p))

where i may not occur in low and high. Moreover, low, high and p may not be modified in the
loop body.

To get the formulas that have to be verified into this form, a number of translations must be
applied. To give an idea of how this transformation works, we will consider a few examples
based on specifications that we have shown before.

The backend cannot work if the index into the array is different from the quantified variable.
So if we use an array index i+c for some constant c then we need to use the fact that

(\forall∗ int i; low <= i && i < high ; Perm(array[i+c],p(i)))
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is equivalent with

(\forall∗ int i; low+c <= i && i < high+c ; Perm(array[i],p(i−c)))

in order to get the formula into the correct from. If there are additional constraint on the array
permission then they can in general be moved into the permission expression. That is,

(\forall∗ int i; low <= i && i < high ; cond ==> Perm(array[i],p))

is equivalent with

(\forall∗ int i; low <= i && i < high ; Perm(array[i],cond?p:none))

in general. However, for specific kinds of conditions it is better to move them into the range
check. For example:

(\forall∗ int i; low <= i && i < high ; i < high2 ==> Perm(array[i],p))

is equivalent with

(\forall∗ int i; low <= i && i < max(high,high2) ; i < high2 ==> Perm(array[i],p))

While both translations fall into the supported category, the special case works better in practice.
The reason for that is that while permission expressions are allowed to depend on the quantified
variables, problems that use that feature are harder for the backend verifier to deal with than
problems that do not.

3.4.1 Encoding into Silicon

The Silicon backend does not know about parallel loops and/or the send/recv keywords. There-
fore these constructs are encoded by means of methods with contracts. The idea is that every
parallel loop

for(int i=0;i < N;i++)
requires pre(i);
ensures post(i);

{
body

}

that occurs somewhere in the code is replaced by a call to the method loop_main, whose contract
encodes the application of the Hoare Logic rule for parallel loops:

/∗@ requires (\forall∗ int i;0<=i && i<N; pre(i));
ensures (\forall∗ int i;0<=i && i<N; post(i)); @∗/

loop_main(int N,free(S)));

This rule requires that every iteration satisfies the iteration contract. To verify this, we create
a method that executes the body of the loop and checks it against the iteration contract for all
possible values of the iteration variable:

/∗@ requires (0<=i && i<N) ∗∗ pre(i);
ensures post(i); @∗/

loop_body(int i,int N,free(S))){ body; }

Within the body there may be pairs of send and recv statements.
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//@ Ss: if (gs(i)) { send φ(i) to Sr, d;}
//@ Sr: if (gr(i)) { recv ψ(i) from Ss, d;}

The guards are left in place, but the statements are replaced with method calls

//@ Ss: if (gs(i)) { send_s_to_r(i,N,free(φ(i));}
//@ Sr: if (gr(i)) { recv_s_to_r(i,N,free(ψ(i));}

where

requires φ(i);
send_s_to_r(int i,int N,free(S)));

ensures ψ(i);
recv_s_to_r(int i,int N,free(S)));

The proof obligations that protect the valid use of send and recv are also encoded with methods.
The guard requirement 3.1, is encoded as the method

requires 0 <= i && i < N;
requires gr(i);
ensures d <= i;
ensures gs(i−d);
void check_guard_send_from_s_to_r(int i,...){ }

And the resource requirement 3.2 is checked with the method:

requires d <= i && i < N;
requires gr(i);
requires gs(i−d);
requires φ(i−d);
ensures gr(i);
ensures ψ(i);
void check_resource_send_from_s_to_r(int i,...){ }

3.4.2 Examples

In this section, we discuss our three running examples complete with functional specifications.
In Listing 4, we provide a fully specified version of vector addition. Both the contract of the
procedure and that of the iteration have been formatted in three parts: the required permissions,
the ensured permissions and the ensured functional properties. The permissions on array a have
to be write, because the elements of this array are assigned to. The permissions for the other
two arrays are 1

2 , which indicates that they are read but not written.
In Listing 5, we show a specified version of the loop with a forward dependence. In this

case the specifications consist of four blocks each: required permissions, required functional
properties, ensured permissions, and ensured functional properties. To show how functional
requirements can be specified and verified, we require that every element of the array b initially
contains the index of the element in the array and prove that every well-ordered computation
will not change this value, and will put index plus 1 in a and index plus 2 in c, with the exception
of the first element of c, which is not assigned and therefore does not contain a known value.
Note how the send and receive statements transfer both a read permission and the knowledge
about the newly assigned value for the array element a[i−1].
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1 /∗@
2 requires \length(a)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(a[i],1));
3 requires \length(b)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(b[i],1/2));
4 requires \length(c)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(c[i],1/2));
5
6 ensures \length(a)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(a[i],1));
7 ensures \length(b)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(b[i],1/2));
8 ensures \length(c)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(c[i],1/2));
9

10 ensures (\forall int i ; 0 <= i && i < len ; a[i]==b[i]+c[i]);
11 ensures (\forall int i ; 0 <= i && i < len ; b[i]==\old(b[i]));
12 ensures (\forall int i ; 0 <= i && i < len ; c[i]==\old(c[i]));
13 @∗/
14 void vector_add(int a[],int b[],int c[],int len){
15 for(int i=0;i < len;i++)
16 /∗@
17 requires \length(a)==len ∗∗ Perm(a[i],1);
18 requires \length(b)==len ∗∗ Perm(b[i],1/2);
19 requires \length(c)==len ∗∗ Perm(c[i],1/2);
20
21 ensures \length(a)==len ∗∗ Perm(a[i],1);
22 ensures \length(b)==len ∗∗ Perm(b[i],1/2);
23 ensures \length(c)==len ∗∗ Perm(c[i],1/2);
24
25 ensures b[i]==\old(b[i]);
26 ensures c[i]==\old(c[i]);
27 ensures a[i]==b[i]+c[i];
28 @∗/
29 {
30 a[i]=b[i]+c[i];
31 }
32 }

Listing 4: Specification of an Independent Loop
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/∗@
requires \length(a)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(a[i],1));
requires \length(b)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(b[i],1/2));
requires \length(c)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(c[i],1));

requires (\forall int tid; 0 <= tid && tid < len ; b [ tid ] == tid);

ensures \length(a)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(a[i],1));
ensures \length(b)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(b[i],1/2));
ensures \length(c)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(c[i],1));

ensures (\forall int i; 0 <= i && i < len ; a[i] == i+1);
ensures (\forall int i; 0 <= i && i < len ; b[i] == i );
ensures (\forall int i; 0 < i && i < len ; c[i] == i+2);

@∗/
void example(int a[],int b[],int c[],int len){

for(int i=0;i < len;i++) /∗@
requires \length(a)==len ∗∗ Perm(a[i],1);
requires \length(b)==len ∗∗ Perm(b[i],1/2);
requires \length(c)==len ∗∗ Perm(c[i],1);

requires b[i]==i;

ensures \length(a)==len ∗∗ Perm(a[i],1/2);
ensures \length(b)==len ∗∗ Perm(b[i],1/2);
ensures \length(c)==len ∗∗ Perm(c[i],1);
ensures i>0 ==> Perm(a[i−1],1/2);
ensures i==\length(a)−1 ==> Perm(a[i],1/2);

ensures a[i]==i+1;
ensures b[i]==i;
ensures i>0 ==> c[i]==i+2;

@∗/ {
a[i]=b[i]+1;
/∗@

S1:if (i< len−1) {
send Perm(a[i],1/2) ∗∗ a[i]==i+1 to S2,1;

}
@∗/
S2:if (i>0) {

//@ recv Perm(a[i−1],1/2) ∗∗ a[i−1]==i from S1,1;
c[i]=a[i−1]+2;

}
}

Listing 5: Specification of a Forward Loop-Carried Dependence
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class Ref {
/∗@

requires (\forall∗ int i ; 0 <= i && i < a.length ; Perm(a[i],1));
ensures (\forall∗ int i ; 0 <= i && i < a.length ; Perm(a[i],1));

@∗/
public void main(int a[]){

for(int i=0;i<a.length;i++)
/∗@

requires Perm(a[i],1/2);
requires i==0 ==> Perm(a[i],1/2);
requires i < a.length−1 ==> Perm(a[i+1],1/2);
ensures Perm(a[i],1);

@∗/
{

//@ S1:if(i>0){ recv Perm(a[i],1/2) from S2,1; }
S2:if (i < a.length−1) {

a[i]=a[i+1];
//@ send Perm(a[i+1],1/2) to S1,1;

}
}

}
}

Listing 6: Specified Array Shift

To show what the tool generated encodings look like, we consider a loop that shifts all
elements in an array one to the left, given in Listing 6. The result after encoding the parallel
loop and the send and recv statements can be found in Listing 7. The translation into silver is
given in Listing 8.

For completeness, we show a specified version of the loop with a backward dependence in
Listing 9. This example has the additional requirement that all elements of the array a have to
be 0. The ensures values for a and b are the same, but the ensures values of c is now 2 for every
element, except the last element.
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Listing 7: Encoded Specification of Array Shift
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field Integer_value: Int

method loop_main_11(this: Ref, a: Seq[Ref])
requires (forall i: Int :: (i in [0..|a|)) ==> acc(a[i].Integer_value, 1 / 2))
requires acc(a[0].Integer_value, 1 / 2)
requires (forall i: Int :: (i in [0 + 1..|a| − 1 + 1)) ==> acc(a[i].Integer_value, 1 / 2))
ensures (forall i: Int :: (i in [0..|a|)) ==> acc(a[i].Integer_value, 1))

{
inhale false

}

method recv_body_30(this: Ref, a: Seq[Ref], i: Int)
ensures acc(a[i].Integer_value, 1 / 2)

{
inhale false

}

method send_body_36(this: Ref, a: Seq[Ref], i: Int)
requires acc(a[i + 1].Integer_value, 1 / 2)

{
inhale false

}

method loop_body_11(this: Ref, a: Seq[Ref], i: Int)
requires (i in [0..|a|))
requires acc(a[i].Integer_value, 1 / 2)
requires (i == 0) ==> acc(a[i].Integer_value, 1 / 2)
requires (i < |a| − 1) ==> acc(a[i + 1].Integer_value, 1 / 2)
ensures (i in [0..|a|))
ensures acc(a[i].Integer_value, 1)

{
if (i > 0) {

recv_body_30(this, a, i)
}
if (i < |a| − 1) {

a[i].Integer_value := a[i + 1].Integer_value
send_body_36(this, a, i)

}
}

method guard_check_S2_S1(this: Ref, a: Seq[Ref], i: Int)
requires (i in [0..|a|))
requires i > 0
ensures 1 <= i
ensures i − 1 < |a| − 1

{
}

method resource_check_S2_S1(this: Ref, a: Seq[Ref], i: Int)
requires (i in [0..|a|))
requires i − 1 < |a| − 1
requires i > 0
requires acc(a[i − 1 + 1].Integer_value, 1 / 2)
ensures i − 1 < |a| − 1
ensures acc(a[i].Integer_value, 1 / 2)

{
}

method main(this: Ref, a: Seq[Ref])
requires (forall i: Int :: (i in [0..|a|)) ==> acc(a[i].Integer_value, 1))
ensures (forall i: Int :: (i in [0..|a|)) ==> acc(a[i].Integer_value, 1))

{
loop_main_11(this, a)

}

Listing 8: Silver Specification of an Array Shift
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/∗@
requires \length(a)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(a[i],1));
requires \length(b)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(b[i],1/2));
requires \length(c)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(c[i],1));

requires (\forall int tid; 0 <= tid && tid < len ; a [ tid ] == 0);
requires (\forall int tid; 0 <= tid && tid < len ; b [ tid ] == tid);

ensures \length(a)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(a[i],1));
ensures \length(b)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(b[i],1/2));
ensures \length(c)==len ∗∗ (\forall∗ int i ; 0 <= i && i < len ; Perm(c[i],1));

ensures (\forall int i; 0 <= i && i < len ; a[i] == i+1);
ensures (\forall int i; 0 <= i && i < len ; b[i] == i );
ensures (\forall int i; 0 <= i && i < len ; c[i] == 2 );

@∗/
void example(int a[],int b[],int c[],int len){

for(int i=0;i < len;i++)
/∗@
requires \length(a)==len ∗∗ Perm(a[i],1/2);
requires i==0 ==> Perm(a[i],1/2);
requires i < len−1 ==> Perm(a[i+1],1/2);
requires \length(b)==len ∗∗ Perm(b[i],1/2);
requires \length(c)==len ∗∗ Perm(c[i],1);
requires i < len−1 ==> a[i+1]==0;
requires b[i]==i;

ensures \length(a)==len ∗∗ Perm(a[i],1);
ensures \length(b)==len ∗∗ Perm(b[i],1/2);
ensures \length(c)==len ∗∗ Perm(c[i],1);
ensures a[i]==i+1;
ensures b[i]==i;
ensures i < len−1 ==> c[i]==2;

@∗/
{
/∗@

S1:if (i>0) {
recv i == (i−1)+1 ∗∗ \length(a)==len ∗∗ Perm(a[i],1/2) from S2,1;

}
@∗/
a[i]=b[i]+1;
S2:if (i < len−1) {

c[i]=a[i+1]+2;
//@ send \length(a)==len ∗∗ Perm(a[i+1],1/2) to S1,1;

}
}

}

Listing 9: Specification of a Backward Loop-Carried Dependence
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4 Update on Verification of OpenCL
Using Permission-Based Separation
Logic
In this chapter, we briefly explain how the specification method for kernels in Deliverable
D6.2 works. We then explain how that specification method is modified slightly in order to
both provide shorter specifications for functional specifications and allow a straightforward
translation of vectorisable parallel loops to kernels that includes translating the specifications.

4.1 Kernel Specification and Verification

To experiment with specification and verification of kernels, we use a prototyping language
whose syntax is based on Java. The specification language built into the language is based
on Separation Logic and JML. The programming model behind OpenCL kernels is based on
parallel execution with tcount threads, which are subdivided into gcount work groups that have
gsize threads each. The code written is the code execution by one thread, which knows to which
workgroup it belongs (gid) and also knows its own thread identity both within the group of all
threads (tid) and within the workgroup it belongs to (lid). Two kinds of memory are available
to threads in kernels: global memory which is shared between all threads in the kernel and local
memory which is shared between threads in a workgroup and not accessible to threads from
other workgroups. Threads within the same working group are guaranteed to run at the same
time and they can synchronise using barriers. These barriers can be marked to indicate if they
should act as memory barriers for the local and/or the global memory.

The specification of a kernel is written in the same way as a specification of a method is
written. That is, a kernel has a contract which states the pre- and post-condition of one thread
and loop invariants have to be provided. In addition barriers have to be annotated with a contract.
In Deliverable D6.2, we proposed a permission redistribution interpretation for barrier contracts.
In this interpretation, the contract of a barrier states which properties must be true before a
barrier, which properties must be true after the barrier and which permissions will be held after
the barrier. For a barrier contract to be valid, for each workgroup the conjunction of the pre-
conditions over the thread in the workgroup must imply the conjunction of the post-conditions
and the separating conjunction of the permission provided to the threads in the workgroup has
to be greater than the separating conjunction of the permissions to be held after the barrier.

Under these rules, specifications can be short because it is not necessary to specify which
permissions are given up during a barrier. Unfortunately, because all permissions are automat-
ically revoked by a barrier that also means that all knowledge about the values contained in
locations is lost. Thus, writing a functional specification under these rules makes the specifica-
tions longer because all information has to be repeated at every barrier. Hence, we also consider
the permission exchange interpretation for barrier contracts. In this interpretation, the contract
of a barrier states which permissions are to be given to other threads and which properties holds
for the location to which permissions are provided and then ensures the same permissions and
properties for the threads that must receive them. For a barrier contract to be valid, for each
workgroup the conjunction of the pre-conditions over the thread in the workgroup must again
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kernel Ref {
global int[tcount] a;
global int[tcount] b;
global int[tcount] c;

requires Perm(a[tid],1);
requires Perm(b[tid],1);
requires Perm(c[tid],1/4);

void main(){
b[tid]=c[tid];
barrier(global){

ensures Perm(a[tid],1);
ensures Perm(b[tid],1/4);
ensures tid>0 ==> Perm(b[tid−1],1/4);

}
if(tid>0) {

a[tid]=b[tid−1]+b[tid];
} else {

a[tid]=b[tid];
}

}
}

Listing 10: Data race freedom specification.

imply the conjunction of the post-conditions and the separating conjunction of the permission
provided to the barrier has to be greater than the separating conjunction of the permissions to be
held after the barrier.

We will show the effect of this change with an example. In Listing 10 we have written
a redistributing barrier specified version of kernel with a barrier, which first copies the array
c[tid] to b[tid] and then assigns the sum of b[tid−1] and b[tid] to a[tid]. The specification is
valid and proves that the kernel is data race free. To do so the barrier has to specify permissions
needed for the statement after the barrier only: permission to write a[tid] and permission to read
b[tid−1] and b[tid].

In addition, we want to prove that if all elements of c are positive at the start then all three
array are positive at the end:

requires Perm(c[tid],1/4) ∗∗ c[tid] > 0;
ensures Perm(a[tid],1/4) ∗∗ a[tid] > 0;
ensures Perm(b[tid],1/4) ∗∗ b[tid] > 0;
ensures Perm(c[tid],1/4) ∗∗ c[tid] > 0;

To achieve this, the barrier specification has to be extended to require and ensure the fact that
the elements of b and c are positive:

barrier(global){
requires b[tid]>0;
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requires c[tid]>0;
ensures Perm(a[tid],1);
ensures Perm(b[tid],1/4);
ensures Perm(c[tid],1/4);
ensures tid>0 ==> Perm(b[tid−1],1/4);
ensures b[tid]>0;
ensures tid>0 ==> b[tid−1]>0;
ensures c[tid]>0;

}

this requires an additional 6 clauses in the specification. The exchanging barrier specification
for the same program is

barrier(global){
requires Perm(b[tid],1/4);
requires b[tid]>0;
ensures tid>0 ==> Perm(b[tid−1],1/4);
ensures tid>0 ==> b[tid−1]>0;

}

which is considerably shorter.

4.2 Compilation of Parallel Loops to Kernels

One of the possibilities for compiling loops is to rewrite them as kernels. Given an independent
loop, the process is very simple: you create a kernel with as many threads as there are loop
iterations and each kernel thread executes one iteration. Moreover, if the loop was specified
with an iteration contract then the iteration contract can be used as the kernel contract. The size
of the workgroup can be chosen at will because no barriers are used. For example, in Listing 11
we list the specified code of a kernel that implements the parallel loop in Listing 4.

If the loop has forward dependences then the kernel must mimic vectorised execution of the
loop. Consider the specified parallel loop

for(int i=0;i < N;i++)
requires φ(i);
ensures ψ(i);

{
S1: if (g1(i)) { B1(i); }

...
SK : if (gK(i)) { BK(i); }

}

and assume that it has forward dependences only. For now, let us assume that both the number
of threads and the size of the working group are N. Then we translate the loop to the kernel

requires φ (tid);
ensures ψ(tid);

loop()
{

C1(tid);
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1 kernel Ref {
2 global int[tcount] a;
3 global int[tcount] b;
4 global int[tcount] c;
5
6 requires Perm(a[tid],1);
7 requires Perm(b[tid],1/2);
8 requires Perm(c[tid],1/2);
9

10 ensures Perm(a[tid],1);
11 ensures Perm(b[tid],1/2);
12 ensures Perm(c[tid],1/2);
13
14 ensures b[tid]==\old(b[tid]);
15 ensures c[tid]==\old(c[tid]);
16 ensures a[tid]==b[tid]+c[tid];
17
18 void main(){
19 a[tid]=b[tid]+c[tid];
20 }
21 }

Listing 11: Kernel Implementing an Independent Loop

...
CK(tid);

}

where

• if Bk is a send statement then it is ignored

Ck(i) ≡ {}

• if Bk(i) is a recv statement with a matching send

S j: if (g j(i)) { send φS(i) to Sk,d; }
Sk: if (gk(i)) { recv φR(i) from S j,d; }

it is replaced by a barrier

Ck(i) ≡
barrier(){

requires g j(i) ==> φS(i);
ensures gk(i) ==> φR(i);

}

where the contract has to be considered in the exchange style.

• if Bk is any other statement then it is copied

Ck(i) ≡ if (g1(i)) { B1(i); }
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1 kernel Ref {
2 global int[tcount] a;
3 global int[tcount] b;
4 global int[tcount] c;
5
6 requires Perm(a[tid],1);
7 requires Perm(b[tid],1/2);
8 requires Perm(c[tid],1);
9

10 requires b[tid]==tid;
11
12 ensures Perm(a[tid],1/2);
13 ensures Perm(b[tid],1/2);
14 ensures Perm(c[tid],1);
15 ensures tid>0 ==> Perm(a[tid−1],1/2);
16 ensures tid==tcount−1 ==> Perm(a[tid],1/2);
17
18 ensures a[tid]==tid+1;
19 ensures b[tid]==tid;
20 ensures tid>0 ==> c[tid]==tid+2;
21
22 void main(){
23 a[tid]=b[tid]+1;
24 barrier(global){
25 requires tid<tcount−1 ==> Perm(a[tid],1/2);
26 requires tid<tcount−1 ==> a[tid]==tid+1;
27 ensures tid>0 ==> Perm(a[tid−1],1/2);
28 ensures tid>0 ==> a[tid−1]==tid;
29 }
30 if (tid>0) {
31 c[tid]=a[tid−1]+2;
32 }
33 }
34 }

Listing 12: Kernel implementing the Forward Dependent Loop, alternate barrier semantics

CARP-ICL-RP-009-v1.4 33 7 August 2014



CARP

In Listing 12 we show the kernel that is derived in this way from the forward dependence
example in Listing 5. For comparison, we have also written a kernel specification that uses
a redistribution style contract. This kernel can be found in Listing 13. Note that the barrier
specification in the first case is not only much shorter because instead of having to specify
all information, only the modified information has to be specified. Moreover, while the first
specification was derived form the send and recv specifications, the barrier contract in the
second example had to be extended with clauses that state that a and b did not change. As long
as the formulas involved do not use recursively defined predicates then these clauses should be
derivable in a fully automatic way. As soon as recursive predicates are used, the problem is
likely to be undecidable. Moreover, it makes the contracts more complicated than necessary.

4.3 Conclusion

We have introduced a new interpretation of barrier contracts, which is used when iteration
contracts are translated to kernels contracts. We have compared the old redistribution inter-
pretation with the new exchange interpretation using examples that were manually derived
from the forward loop dependence example in the previous chapter. We have described how to
construct a specified kernel given a specified parallel loop, for the special case of the number of
threads being equal to the number of loop iterations. It is future work to adapt this translation
for the number of threads being a divisor of the number of iterations and to implement the
transformation.
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1 kernel Ref {
2 global int[tcount] a;
3 global int[tcount] b;
4 global int[tcount] c;
5
6 requires Perm(a[tid],1);
7 requires Perm(b[tid],1/2);
8 requires Perm(c[tid],1);
9

10 requires b[tid]==tid;
11
12 ensures Perm(a[tid],1/2);
13 ensures Perm(b[tid],1/2);
14 ensures Perm(c[tid],1);
15
16 ensures a[tid]==tid+1;
17 ensures b[tid]==tid;
18 ensures tid>0 ==> c[tid]==tid+2;
19
20 void main(){
21 a[tid]=b[tid]+1;
22 barrier(global){
23 requires a[tid]==tid+1;
24 ensures tid>0 ==> Perm(a[tid−1],1/2);
25 ensures tid>0 ==> a[tid−1]==tid;
26
27 ensures Perm(a[tid],1/2);
28 ensures Perm(b[tid],1/2);
29 ensures Perm(c[tid],1);
30 ensures a[tid]==\old(a[tid]);
31 ensures b[tid]==\old(b[tid]);
32 }
33 if (tid>0) {
34 c[tid]=a[tid−1]+2;
35 }
36 }
37 }

Listing 13: Kernel implementing the Forward Dependent Loop
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5 Translation Validation for the
PENCIL→OpenCL Compiler
The PENCIL→OpenCL compiler of WP4 takes a high-level description of a computation,
expressed in the PENCIL language [2] (see Deliverable D3.5) and uses polyhedral compilation
techniques [25, 24, 51] to generate optimised OpenCL [37] code to run on a variety of GPU and
CPU platforms.

For correctness of the generated code, and to ensure semantic equivalence across platforms,
it is essential that the generated OpenCL is free from data races.

If a PENCIL program is expressed without the use of summary functions or assume state-
ments (see Deliverable D3.5) then the PENCIL→OpenCL compiler in principle guarantees that
generated code is race-free. Nevertheless, the compiler is a sophisticated and complex tool,
and compiler bugs are an accepted reality [52]. There is thus value in performing translation
validation to check that the generated OpenCL code is indeed free from data races.

In cases where the polyhedral analysis performed by the compiler is not sufficient to enable
desired optimisations, the programmer can annotate a PENCIL application using summary
functions and assume statements. This allows known facts from a given application domain
to be fed to the compiler. The compiler takes these metadata facts on trust and may exploit
them to generate efficient code. A compelling potential use of metadata is in the use of
PENCIL as a target language for DSL compilers. A DSL→PENCIL compiler (for instance, the
VOBLA→PENCIL compiler described in Deliverable D3.3) may emit metadata in the generated
code capturing facts that were readily available at the DSL level but which would be hard to
recover through general-purpose program analysis of PENCIL code. The risk of exploiting
metadata is that should the metadata be wrong, the PENCIL→OpenCL compiler may produce
meaningless OpenCL code. One manner in which this meaninglessness may manifest itself is
through data races, thus the translation validation methods proposed here could be useful in
flagging cases of incorrect metadata.

Our initially idea for providing translation validation for race-freedom was to extend the
GPUVerify method of Deliverable D6.2 to enable fully automatic analysis of compiler-generated
code. We discuss in Section 5.1, using an example, that this approach proved possible in
principle, but extremely challenging in practice. We could see an ad-hoc path for improving
automation of the analysis on a case-by-case basis, but were troubled by the lack of a general
principle for handling arbitrary kernels generated by the compiler.

The ICL team communicated this initial experience to the compiler team at ENS, explaining
the sorts of invariants GPUVerify requires in order to prove race-freedom, and how these
invariants must be expressed. For PENCIL programs that are not equipped with metadata (i.e.,
programs that can be handled directly using polyhedral methods) the ENS team established that
the invariants required by GPUVerify can be extracted directly from the dependence information
on which polyhedral code generation is based. For this class of programs the ENS team were
able to extend the PENCIL→OpenCL compiler to automatically generate an invariant sufficient
for proving race-freedom. In some sense, this invariant is a certificate from the compiler that it
has produced race-free code. Crucially, GPUVerify does not take this certificate on trust. Rather,
GPUVerify simultaneously (a) proves that the certificate is valid (that the specified invariant is
indeed an invariant), and (b) uses the certificate in a proof of race-freedom for the kernel. We
describe this process of integrating GPUVerify with the PENCIL→OpenCL tools in Section 5.2.
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__kernel void kernel0(__global double *A, __global double *B, int n, int tsteps, int h0)

{

int b0 = get_group_id(0);

int t0 = get_local_id(0);

__local double shared_A[32][32];

define min(x,y) ((x) < (y) ? (x) : (y))define max(x,y) ((x) > (y) ? (x) : (y))

for (int g1 = 32 * b0; g1 < n; g1 += 1048576) {

for (int g5 = 0; g5 < n; g5 += 32) {

if (n >= t0 + g5 + 1) {

for (int c0 = 0; c0 <= min(31, n - g1 - 1); c0 += 1) {

shared_A[c0][t0] = A[(g1 + c0) * n + (t0 + g5)];

}

}

barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);

if (n >= t0 + g1 + 1) {

for (int c2 = max(-g5 + 1, 0); c2 <= min(31, n - g5 - 1); c2 += 1) {

B[(t0 + g1) * n + (g5 + c2)] =

(B[(t0 + g1) * n + (g5 + c2)] - ((shared_A[t0][c2] * shared_A[t0][c2]) /

B[(t0 + g1) * n + (g5 + c2 - 1)]));

}

}

barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);

}

}

}

Figure 5.1: An example kernel generated by the PENCIL→OpenCL compiler.

We have not yet applied the integrated setup to PENCIL programs that are annotated with
metadata. In such cases we believe that analysis using GPUVerify may be capable of identifying
incorrect metadata. On the other hand, for the same reasons that the given metadata could not be
derived automatically by the PENCIL→OpenCL compiler, it may be the case that GPUVerify is
similarly unable to prove race-freedom of a kernel that has been optimised based on metadata
annotations.

In Section 5.3 we describe an experience report using this setup to prove race-freedom for
a set of stencil kernels generated by the PENCIL→OpenCL compiler. We demonstrate that
analysis is highly automatic, and argue that with some additional engineering the process can be
made completely automatic.

5.1 Manual verification of a compiler-generated kernel

Figure 5.1 shows an example OpenCL kernel generated by the PENCIL→OpenCL compiler of
WP4. The kernel performs one stage of a stencil computation, processing data from input array
A into output array B.

Details of the kernel’s behaviour are not important for the discussion here; what is important
to note about this kernel is that it contains a significant number of loops (four), and that
concurrent threads write to the global array B and the local array shared_A.

In order to prove that the kernel is free from data races, GPUVerify must determine that
whenever a thread may access B or shared_A at a given index, no other thread can write to the
array at this index.

To conduct this reasoning in the presence of loops, GPUVerify requires loop invariants
to abstractly describe the effect of an arbitrary number of loop iterations. As discussed in
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Deliverable D6.2, and studied in detail in [7], GPUVerify uses the Houdini method [26] for loop
invariant inference. Our approach to loop invariant generation in GPUVerify using Houdini has
been to manually determine invariants for a number of examples and then equip GPUVerify
with rules to automatically guess the types of invariants that crop up frequently.

We spent some time attempting to verify kernels such as the example of Figure 5.1 through
manual invariant annotation. Our efforts were successful in the sense that, with enough per-
severance, we could eventually determine suitable invariants. However, the process was time-
consuming and did not yield obvious insights into how to generate the required invariants
automatically.

As an example, Figure 5.2 shows the kernel of Figure 5.1 after we annotated it with invariants
necessary for verification of race-freedom to succeed. The purpose of Figure 5.1 is to illustrate
the scale of the invariant generation challenge these kernels present; specific details of the
invariants (the lines starting with __global_invariant) are not important for this discussion.

We were able to extend GPUVerify to automatically infer many of the simpler invariants
in Figure 5.2, but we did not manage to devise a general-purpose mechanism for inferring
invariants characterising the access pattern for the array B; these are the invariants containing
__read_implies(B, ...) and __write_implies(B, ...).

5.2 Extending the PENCIL→OpenCL compiler to issue a certifi-
cate of race-freedom

Having understood the sorts of invariants required to verify a collection of examples, such as
the annotated kernel of Figure 5.2, the ICL team approached the team at ENS developing the
PENCIL→OpenCL compiler for advice on how to understand the access patterns of generated
kernels in general, in order to come up with an automated method for invariant generation.

After some discussion the teams established that the PENCIL→OpenCL compiler has,
during compilation, a precise representation of the access pattern for the kernel that is being
generated, thus we explored the idea of having the compiler emit an invariant characterising this
access pattern, rather than having GPUVerify attempt to discover such an invariant post-hoc via
program analysis.

To this end, we equipped GPUVerify with a new annotation construct, __function_wide_
invariant, for “function-wide” invariants. A function-wide invariant annotation is a formula
that should be attached as an invariant to every loop inside the function where the annotation
appears. The PENCIL→OpenCL compiler then generates two function-wide invariants per
global array used by the kernel, one characterising the locations to which a thread may write to
the array, the other the locations from which a thread may read from the array.

Figure 5.3 shows an example function-wide invariant generated by the compiler, characteris-
ing writes to a global array B. As with the examples of Figures 5.1 and 5.2, we are not concerned
here with the precise details of Figure 5.3; rather, the purpose of the figure is to illustrate that the
compiler is able to automatically emit a precise invariant that would be challenging to recover
from the source code of the emitted kernel.

It is important to note that the function-wide invariant emitted by the compiler is not taken
by GPUVerify on trust. Instead, GPUVerify takes responsibility for both (a) checking that
the provided invariant is indeed an invariant, and (b) using the provided invariant to prove
race-freedom for the kernel.

Currently the function-wide invariant issued by the PENCIL→OpenCL compiler does not
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__kernel void kernel0(__global double *A, __global double *B, int n, int tsteps, int h0)

{

__requires(tsteps == 32);

__requires(n == 1024);

int b0 = get_group_id(0);

int t0 = get_local_id(0);

__local double shared_A[32][32];

define min(x,y) ((x) < (y) ? (x) : (y))define max(x,y) ((x) > (y) ? (x) : (y))

for (int g1 = 32 * b0;

__global_invariant(__write_implies(B,

(((__write_offset_bytes(B)/sizeof(double))/n) % 1048576) == 32 * b0 + t0)),

__global_invariant(__read_implies(B,

(((__read_offset_bytes(B)/sizeof(double))/n) % 1048576) == 32 * b0 + t0)),

__global_invariant(__implies(g1 < n, __enabled())),

__global_invariant(__implies(__same_group, __no_read(shared_A))),

__global_invariant(__implies(__same_group, __no_write(shared_A))),

g1 < n; g1 += 1048576) {

for (int g5 = 0;

__global_invariant(__write_implies(B,

(((__write_offset_bytes(B)/sizeof(double))/n) % 1048576) == 32 * b0 + t0)),

__global_invariant(__read_implies(B,

(((__read_offset_bytes(B)/sizeof(double))/n) % 1048576) == 32 * b0 + t0)),

__global_invariant(__implies((g1 < n) & (g5 < n), __enabled())),

__global_invariant(__implies(__same_group, __no_read(shared_A))),

__global_invariant(__implies(__same_group, __no_write(shared_A))),

g5 < n; g5 += 32) {

if (n >= t0 + g5 + 1) {

for (int c0 = 0;

__global_invariant(__implies(__same_group & __write(shared_A),

(g1 < n) & (g5 < n) & (n >= t0 + g5 + 1))),

c0 <= min(31, n - g1 - 1); c0 += 1) {

shared_A[c0][t0] = A[(g1 + c0) * n + (t0 + g5)];

}

}

barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);

if (n >= t0 + g1 + 1) {

for (int c2 = max(-g5 + 1, 0);

__invariant(c2 >= max(-g5 + 1, 0)),

__global_invariant(__write_implies(B,

(((__write_offset_bytes(B)/sizeof(double))/n) % 1048576) == 32 * b0 + t0)),

__global_invariant(__read_implies(B,

(((__read_offset_bytes(B)/sizeof(double))/n) % 1048576) == 32 * b0 + t0)),

__global_invariant(__implies(__same_group, __no_write(shared_A))),

__global_invariant(__implies(__same_group & __read(shared_A),

(g1 < n) & (g5 < n) & (n >= t0 + g1 + 1))),

c2 <= min(31, n - g5 - 1); c2 += 1) {

B[(t0 + g1) * n + (g5 + c2)] =

(B[(t0 + g1) * n + (g5 + c2)] - ((shared_A[t0][c2] * shared_A[t0][c2]) /

B[(t0 + g1) * n + (g5 + c2 - 1)]));

}

}

barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);

}

}

}

Figure 5.2: The kernel of Figure 5.1 annotated with invariants that allows race-freedom to be
proven.
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__function_wide_invariant(

__write_implies(B,

32 * b0 + t0 >= 0

& 32 * b0 + t0 <= 1048575

& n >= (__write_offset_bytes(B) / sizeof(double) / n % n) + 1

& __write_offset_bytes(B) / sizeof(double) / n % n >= 0

& __write_offset_bytes(B) / sizeof(double) % n >= 1

& n >= (__write_offset_bytes(B) / sizeof(double) % n) + 1

& (32 * b0 + t0 - (__write_offset_bytes(B) / sizeof(double) / n % n)) % 1048576 == 0

)

);

Figure 5.3: An example function-wide invariant emitted by the PENCIL→OpenCL compiler.

generate an invariant for race-freedom on OpenCL local memory regions; this is left for future
work.

5.3 Analysing a set of compiler-generated stencil kernels

We applied the PENCIL→OpenCL compiler to the adi stencil example from the PolyBench
benchmark suite [27].

This leads to the generation of five OpenCL kernels expressing various stages of this stencil
computation. Each kernel is equipped with a function-wide invariant generated by the compiler.

Using GPUVerify we were able to verify race-freedom for four of the five kernels fully
automatically. The fifth kernel required one auxiliary invariant related to the values that may be
taken by a loop counter to be manually supplied. For fully automatic generation we must either
extend GPUVerify to infer this invariant automatically, or extend the invariants emitted by the
PENCIL→OpenCL compiler so that facts about loop counters are also captured.

As part of the validation phase of the CARP project we will assess translation validation for
larger set of examples.
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6 KernelInterceptor: Dynamic
Interception of OpenCL Kernels for
Offline Verification
The GPUVerify tool [7], presented in Deliverable D6.2 and discussed with application to
translation validation in Chapter 5, can be used to verify that GPU kernels, written in either
CUDA1 or OpenCL,2 are free from data races and barrier divergence. The analysis is performed
statically; that is, GPUVerify does not actually run the kernel, but merely examines its source
code. GPUVerify is useful for discovering defects in kernels, but can also go further than
any testing tool can: it is able to certify that a given kernel is free from data races and barrier
divergence under any execution schedule. GPUVerify has already proved itself to be of practical
use when applied to non-trivial OpenCL and CUDA kernels [7]. For instance, it is able to verify,
without user intervention, 49 of the 70 kernels in version 2.6 of the AMD Accelerated Parallel
Processing SDK.3

GPUVerify is intended as a completely-automatic tool, requiring minimal expertise and
minimal effort from its users. However, assembling all of the necessary inputs to GPUVerify is
a significant manual effort. The user must examine the source code of their application, and
supply to GPUVerify:

• the source code of each kernel,

• the precise number of work items and work groups that will execute each kernel,

• constraints on the values of selected kernel arguments (where necessary for kernel cor-
rectness), and

• barrier invariants [15] and loop invariants (where necessary for successful verification).

In this chapter we describe an extension to GPUVerify, called KernelInterceptor, that automates
the extraction of the first three items above from a given OpenCL application. The fourth
item, invariant discovery, remains a challenging research topic, as discussed in Section 6.3.
Nevertheless, KernelInterceptor marks a significant step towards fully automated verification of
GPU kernels.

KernelInterceptor is used as follows.

1. The user prepares an application for interception. Small modifications must be made
to the source code and build process of the OpenCL application to be analysed.

2. The user executes the application. As the application executes, KernelInterceptor
intercepts each kernel launch and records the kernel’s source code and the parameters
passed.

3. The user executes GPUVerify. GPUVerify presents a list of intercepted kernels. The
user can then ask GPUVerify to try to verify all or some of these kernels.

1http://www.nvidia.com/object/cuda_home_new.html
2http://www.khronos.org/opencl/
3http://developer.amd.com/sdks/amdappsdk
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Benchmark 
The demo includes a benchmark mode that export a comma separated file (for Excel)  
bin/App_Bullet3_OpenCL_Demos_clew_vs2010 --benchmark 
You can use the F1 key to create a screenshot and the Escape key will terminate the demo. 
 
Feedback 
Although the new Bullet 3.x OpenCL rigid body work is still work-in-progress, it can already be useful for 
VFX projects that need to simulate a large amount of bodies on a single desktop computer.  
 
If you have any feedback about the software, please contact the author at erwin.coumans@gmail.com 
or visit the Bullet physics forums at http://bulletphysics.org 
 
 
 
 
 

Figure 6.1: The Bullet rigid body simulator in action, simulating hundreds of thousands of
bodies and their collisions, all in real-time. Picture credit: Erwin Coumans [19].

In the remainder of this chapter, we describe in detail how KernelInterceptor is used
(Section 6.1) and how it is implemented (Section 6.2). Section 6.3 evaluates KernelInterceptor’s
limitations and the extent to which it improves the usability of GPUVerify, and also discusses
related and future work.

6.1 Usage

This section explains how KernelInterceptor works from the user’s perspective. As a running
example, we use an OpenCL application that simulates collisions of rigid bodies [19]. This
application is part of the open source Bullet Physics library (version 3)4 and the code is available
online.5 The capabilities of the simulator are demonstrated in Fig. 6.1.

6.1.1 Instrumenting the source code

To use KernelInterceptor, the user must first download GPUVerify, with which the KernelInter-
ceptor header file (cl_interceptor.h) and library (cl_interceptor.cpp) are shipped.

The line

#include "/path/to/cl_interceptor.h"

must be added to each .cpp file that includes the OpenCL headers (cl.h or opencl.h). In the
case of the Bullet simulator, the only relevant file is b3OpenCLInclude.h.

The user must modify their build process so that it compiles cl_interceptor.cpp and
links it against their application. In the case of the Bullet simulator, it suffices to add cl_interceptor.o
as a build target in the relevant makefiles.

The application can now be built and run as normal. The interception process records entire
kernel texts and writes them to disk on every kernel invocation, which may incur nontrivial

4http://bulletphysics.org
5https://github.com/erwincoumans/bullet3
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[0] Name: AddOffsetKernel

File: .gpuverify/AddOffsetKernel001.cl

local_size=128 global_size=12544

args=0x7f4b000000800000006300006271

Built at b3OpenCLUtils.cpp:880

Run at b3LauncherCL.h:117

[1] Name: AddOffsetKernel

File: .gpuverify/AddOffsetKernel002.cl

local_size=128 global_size=12544

args=0x7f4b000000800000006300006271

Built at b3OpenCLUtils.cpp:880

Run at b3LauncherCL.h:117

[2] Name: AddOffsetKernel

File: .gpuverify/AddOffsetKernel003.cl

local_size=128 global_size=896

args=0x7f4b000000080000000800000780

Built at b3OpenCLUtils.cpp:880

Run at b3LauncherCL.h:117

...

Figure 6.2: Abridged output obtained from the command gpuverify --show-intercepted

runtime overhead. We therefore recommend enabling KernelInterceptor only as part of a debug
build.

6.1.2 Inspecting the intercepted kernels

The user can view information about the intercepted kernels using the command

gpuverify --show-intercepted.

After running KernelInterceptor on the Bullet simulator, this command produces the output
shown in Fig. 6.2.

Each kernel instance is identified by a number, which is given in brackets. For each instance,
the command reports:

• the name of the kernel;

• the file that contains the kernel’s source code;

• the work group size (local_size) and the total number of work items (global_size);

• the hexadecimal values of the kernel’s scalar arguments (see remark below);

• the position in the application’s source code where this kernel was compiled; and

• the position in the application’s source code where this kernel was invoked.

We remark that KernelInterceptor does not record non-scalar arguments (i.e., array or pointer
arguments), since they tend not to affect the correctness of the kernel. Indeed, GPUVerify ignores
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GPUVerify kernel analyser checked 37 kernels.

Successfully verified 35 kernels.

Failed to verify 2 kernels.

Successes:

[0] Verification of AddOffsetKernel

(.gpuverify/AddOffsetKernel001.cl) succeeded with:

local_size=128 global_size=12544 args=3

...

Failures:

[13] Verification of scatterKernel

(.gpuverify/scatterKernel003.cl) failed with:

local_size=12 global_size=256 args=14,8

[27] Verification of SubtractKernel

(.gpuverify/SubtractKernel020.cl) failed with:

local_size=12 global_size=24 args=7

Run `gpuverify --check-intercepted=<number>' for

more details.

Figure 6.3: Abridged output obtained from the command
gpuverify --check-all-intercepted

the values of such arguments as part of its abstraction. Scalar values are stored in hexadecimal
format because GPUVerify deals only with untyped bitvectors.

Reporting where each kernel instance was compiled and where it was invoked is valuable
to users because tracing the origin of a kernel obtained by KernelInterceptor can be tricky: the
kernel’s source code may not be simply read from a file, but pieced together from multiple files
and string constants at runtime, and possibly configured based on user input.

6.1.3 Verifying the intercepted kernels

Having inspected the intercepted kernels, the user can now ask GPUVerify to check their
correctness.

The command

gpuverify --check-all-intercepted

instructs GPUVerify to attempt to verify all of the kernel instances. In an effort to maintain
readability when there are many kernel instances, the output from GPUVerify is abbreviated, so
as to identify only those kernels that failed to verify. These kernels can then be examined and
re-verified individually. An illustrative output is shown in Fig. 6.3.

The command

gpuverify --check-intercepted=2

instructs GPUVerify to attempt to verify the kernel instance identified as number 2. In this
case, GPUVerify outputs a message that it has verified the kernel, which implies that there
are no data races and no instances of barrier divergence. Had GPUVerify detected the po-
tential for any of these defects, it would have directed the user to the relevant line(s) in the
AddOffsetKernel003.cl file. The third possible result from running GPUVerify is a timeout,
which occurs when GPUVerify is unable to prove or to disprove the kernel’s correctness.
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1 // --local_size=128 --global_size=896

--kernel-args=AddOffsetKernel,0x00007f4b000000080000000800000780

2 // Built at ../../src/Bullet3OpenCL/Initialize/b3OpenCLUtils.cpp:880

3 // Run at ../../src/Bullet3OpenCL/ParallelPrimitives/b3LauncherCL.h:117

. . .
94 __kernel

95 void AddOffsetKernel(__global u32 *dst, __global u32 *blockSum, uint4 cb)

96 {

. . .
106 }

Figure 6.4: Data logged in AddOffsetKernel003.cl for the third instance of the
AddOffsetKernel kernel

6.2 Implementation

We now discuss some of the technical details of the implementation of KernelInterceptor. We
continue to use the Bullet simulator as a running example.

6.2.1 Intercepting kernel launches

Relevant OpenCL host functions, such as clCreateBuffer, clCreateProgramWithSource
and clSetKernelArg, are intercepted at the source level, such that, for example, a call to
clSetKernelArg in the host code actually calls our wrapper function, clSetKernelArg_hook.
The wrapper functions log the relevant information and then pass the parameters to the original
functions, as normal.

6.2.2 Logging kernel parameters

Each time a kernel is invoked, KernelInterceptor creates a file, whose name is formed from the
name of the kernel, followed by a unique identifier to avoid name clashes. These files are stored
in a .gpuverify directory, which KernelInterceptor creates in either the application’s main
directory, or in a directory specified by the environment variable GPUV_KI_DIR. In the case of
the Bullet simulator, when executed for a few seconds on several of the standard demonstrations,
over a thousand such files were created, corresponding to the invocations of 44 different kernels.

Let us now consider one of these files, AddOffsetKernel003.cl, which is created when
KernelInterceptor intercepts the third launch of the kernel called AddOffsetKernel. Its contents
is shown in Fig. 6.4. The file contains the kernel’s source code, preceded by three commented
lines. The first of these records the work group size and total number of work items, plus the
hexadecimal value of AddOffsetKernel’s sole scalar argument (which is named cb). The
second and third lines record the positions in the source code where the kernel was compiled
and invoked, respectively.

6.2.3 Passing kernel arguments to GPUVerify

We have extended GPUVerify to accept a --kernel-args flag through which values for the
arguments of a given kernel can be provided.
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If K is the name of a kernel, and K’s scalar arguments are x1, . . . , xn, then

--kernel-args=K,v1,...,vn

instructs GPUVerify to assume the precondition

__requires(xi==vi)

for each 0< i≤ n, when verifying the kernel K. The order of the values provided to --kernel-args
matches the order in which K’s scalar arguments are declared.

An argument can be left unconstrained by inserting an asterisk. For instance, if K accepts
three scalar arguments, a, b and c, then the flag

--kernel-args=binning_kernel,*,0x42,*

will insert the single precondition

__requires(b==0x42).

It is allowable to pass several --kernel-args flags to GPUVerify, each providing arguments
for a different kernel in the same .cl file. By default, GPUVerify seeks to verify all the kernels
in a given file, but we arrange that when one or more --kernel-args flags are provided,
GPUVerify only checks those kernels that are named in those flags. A .cl file may contain
a large number of kernels, only some of which are used by an application; our arrangement
ensures that GPUVerify seeks to verify only those kernels that are actually invoked.

6.2.4 Caching verification results

When multiple kernel instances share the same source code, launch parameters and kernel
arguments, the results of attempting to verify them will be the same. To avoid redundant calls to
GPUVerify, we arrange that the results of successful verification attempts are written to a cache
file, whose path is specified using the command-line flag

--cache=<path>.

The cache file is consulted before each verification attempt, and if there is a match, the cached
result is displayed. Failed verification attempts are not cached, since such attempts might
become successful when a more capable version of GPUVerify becomes available.

6.3 Discussion

In this section, we comment on the usability of our tool, discuss related work, consider some
limitations of our tool, and suggest some future lines of enquiry.

6.3.1 Usability of KernelInterceptor

The GPUVerify team used KernelInterceptor to assist with the verification of the Parboil
benchmark suite [50]. This suite consists of 12 programs and 25 unique kernels, some program-
matically generated.

KernelInterceptor accelerated the process of extracting kernel source, compiler options,
and valid local and global sizes. We observe that some kernels, such as those in the stencil
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benchmark, are only race free when given certain arguments; this would have been difficult to
infer without the data provided by KernelInterceptor.

Using KernelInterceptor required adding just a handful of lines to the benchmark source and
makefiles. It removed a significant amount of labour in the preparation of a recent conference
paper [4].

6.3.2 Limitations

Discovery of invariants Although this work increases the degree of automation in GPU
kernel verification, we should point out that completely automatic verification requires significant
further research, due to the problem of discovering invariants for verifying barrier statements [15]
and loop statements. Many kernels cannot be verified without these invariants, and although
much progress has been made in using heuristics to infer these automatically, the task of
supplying them often falls back to the user.

Dependence on particular kernel parameters Note that because the parameters are ex-
tracted from a particular execution of the OpenCL application, we cannot claim every kernel to
be ‘fully verified’: the kernel may not be correct when launched with different parameters. What
we can claim is that with these parameters, the kernel is correct under any execution schedule.

6.3.3 Future directions

Generalising parameters As noted above, a successfully verified kernel is only guaranteed
to be defect-free when launched with specific parameters. In future work, we plan to investigate
how to generalise these parameters, in order to strengthen the verification result.

Consider SubtractKernel, one of the kernels from the Bullet simulator. Starting from a
successful verification with parameters

--local_size=64 --global_size=256

--kernel-args=SubtractKernel,0x000065f4,0x00000100

one could greedily unconstrain values, by setting them to “*”, until a minimal set of constraints
is obtained. We find that the correctness of this particular kernel does not depend on the kernel
arguments, so the constraints

--local_size=64 --global_size=256 --kernel-args=SubtractKernel,*,*

are sufficient.
When there are many kernel instances to check, this parameter generalisation technique may

lead to fewer calls to GPUVerify being required. For instance, all instances of SubtractKernel
where local_size is 64 and global_size is 256 can now be considered verified, regardless
of the other parameters, since the stronger result has already been proven.

We also plan to investigate other ways to unconstrain kernel parameters. Constraints such as
‘this parameter must be a power of 2’ or ‘that parameter must not exceed 1024’ could reasonably
be conjectured by a tool such as Daikon [21], and then checked.

Run-time instrumentation We are considering implementing an alternative mechanism that
operates solely at run-time. This would be even less intrusive to the user than the current
mechanism, because no recompilation would be necessary. However, it would require additional
work on our part to ensure compatibility with all platforms and drivers.
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In the case of a Linux environment, we would make use of the LD_PRELOAD environment
variable. This identifies a directory of libraries that should, at run-time, be linked before any
other. By pointing this variable to our library of wrappers for the relevant OpenCL host functions,
we can attain run-time interception.

Support for other kernel programming languages We plan to extend our kernel inter-
ception technique to support kernels that have been pre-compiled to the SPIR6 intermediate
representation. GPUVerify has direct support for the LLVM7 intermediate representation [18],
of which SPIR is a dialect, so this should prove quite straightforward. We plan also to support
kernels written in CUDA, but we note that the run-time linking trick described above would not
work in a CUDA setting, where host programs are typically linked statically.

Static analysis We plan to investigate the use of static analysis on the host program as an
alternative way to discover kernel parameters. This would mean that the OpenCL application
would not need to be executed at all; our tool would simply examine the application’s source
code. An advantage of an approach based on static analysis is that the correctness of the kernel
can be guaranteed for all possible executions of the application, rather than just a particular
execution. A disadvantage, however, is that the kernel verification is more likely to fail. It
may, for instance, be understood that the application is only to be provided with positive inputs,
but unless this requirement is codified as an explicit precondition in the source code, the static
analysis will be ignorant of this and report that the kernel is incorrect in general.

6.3.4 Related work

There has been significant interest recently in methods for analysing and verifying GPU kernels.
Li and Gopalakrishnan’s PUG analyser shares the problem of requiring the user to supply

kernel arguments and the number of work items manually [40]. Our technique for addressing
this problem only applies to OpenCL kernels, and hence is not directly applicable to PUG,
which analyses only CUDA kernels.

The GKLEE [41] and KLEE-CL [17] tools, which are based on dynamic symbolic execution,
do not have this problem because they execute symbolically both host and device code. However,
although these tools seek to discover data races, they do not attempt to verify their absence as
GPUVerify does.

The technique of Leung et al. [39] for verifying race-freedom of CUDA kernels is based on
dynamic analysis and thus already exploits information about thread configurations and kernel
arguments.

In Deliverable D6.1, and discussed further in Chapter 4, we presented CARP research on a
technique to allow functional verification of GPU kernels without the need to fix the number of
work items [32]. We observe that many kernels require some constraints on the number of work
items (such as ‘must be a power of 2’ or ‘must not exceed 1024’) in order to be correct. The
KernelInterceptor concept could therefore prove useful in this setting.

6http://www.khronos.org/spir
7http://llvm.org/
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7 Automated Termination Analysis
for GPU Kernels
As GPUs are separate devices to which kernels are offloaded, it is generally difficult to perform
live debugging. Hence, different means are needed to identify bugs. In previous work—
Deliverable D6.2 and [7, 18]—we have looked at uncovering data races. Here we consider
termination.

Unlike CPU applications, which may be reactive, GPU kernels are required to terminate:
any data computed by a kernel is inaccessible from the CPU as long as the kernel has not
terminated. Besides this practical consideration, termination is also important from a theoretical
perspective: the data race detection method described in [7], which underpins our data race
detection tool GPUVerify, is only sound for terminating kernels.

We describe and evaluate a method for proving termination of kernels. Termination analysis
is complicated by concurrency, but there is no need to reason about recursive calls or dynamically
changing data structures since recursion and dynamic memory allocation are generally not
supported by kernel programming languages.

The contributions of this chapter are two-fold:

1. We leverage termination analysis for sequential programs to obtain an analysis technique
for GPU kernels; the technique abstracts from all but one arbitrary thread.

2. We adapt an existing termination analysis tool—KITTeL [22, 23]—and show that it can
be successfully applied to a large set of real-world kernels.

7.1 Reduction to Sequential Termination Analysis

We present the kernel programming language from [16], which has the following grammar:
expr e ::= c | v | A[e] | e1 op e2
stmt s ::= v := e | A[e1] := e2 | if(e){ss1} else {ss2} | while(e){ss} | barrier
stmts ss ::= ε | s;ss

Here, c and v represent constants and thread-private variables; A and op represent shared arrays
and arbitrary binary operators. As explained in the introduction, the barrier statement allows
for synchronisation between threads; ε represents the empty sequence of statements. A kernel
program P is a sequence of statements ss; all threads execute the same sequence ss. For technical
reasons we assume that an expression e has at most one sub-expression of the form A[e′], so that
evaluating an expression involves reading at most once from the shared state; a kernel can be
trivially preprocessed to satisfy this restriction.

A thread state is a pair (σv,ss), where σv represents the private memory of a thread—
mapping private variables to values—and where ss is the sequence of the statements the thread
needs to execute. A kernel state is a pair (σA,K), where σA represents the shared memory of
the kernel—mapping shared arrays to sequences of values—and where K is a map from a finite
set of thread identifiers t to thread states. The initial kernel state of a kernel program P is any
state such that the second component of each K(t) is P.

Figure 7.1 gives the operational semantics of the language. For brevity, we omit the rules for
the assignments and if-statement, which are straightforward, and refer the reader to [16]. The
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JeKσv
σA

(σv,σA,while(e){ss};ss′)
→s (σv,σA,ss ·while(e){ss};ss′)

(LOOP-T)
¬JeKσv

σA

(σv,σA,while(e){ss};ss′)
→s (σv,σA,ss′)

(LOOP-F)

(a) The thread-level rules (operating over thread states (σv,ss) and shared memory σA)

K(t) = (σv,ss) (σv,σA,ss)→s (σ
′
v,σ
′
A,ss′) K′ = K[t 7→ (σ ′v,ss′)]

(σA,K)→k (σ
′
A,K

′)
(STEP)

(
∀t : ∃σv :

∨ (∃ss :K(t) = (σv,barrier;ss)∧K′(t) = (σv,ss))
(K(t) = (σv,ε) ∧K′(t) = (σv,ε))

)
∃t,σv,ss : K(t) = (σv,barrier;ss)

(σA,K)→k (σA,K′)
(BARRIER)

(b) The Kernel-level rules (operating over kernel states (σA,K))

Figure 7.1: Operational semantics of our kernel programming language

rules for the while-statement evaluate the guard e under σv and σA, denoted JeKσv
σA , and proceed

accordingly. As can be seen from rule STEP, the language has an interleaving semantics. Rule
BARRIER is used for synchronisation between threads: no thread can proceed beyond a barrier
unless all threads have either reached a barrier or have terminated. The rule requires that at least
one thread is actually at a barrier; this ensures that the rule no longer fires once all threads have
terminated (i.e., once all have reached a state (σv,ε)).

We next reduce the termination problem for kernel programs to a sequential termination
problem. The reduction makes termination analysis for kernel programs thread-modular by
checking termination of a single, arbitrary thread under an environmental abstraction that
over-approximates the effects of the other threads.

To obtain the abstraction, existentially quantify the premise of each thread-level rule over
all array stores σA and replace rule BARRIER by the thread-level rule (σv,σA,barrier;ss)→
(σv,σA,ss). Denote by→s,? the over-approximating thread-level reduction relation such ob-
tained. The relation ensures that the contents of σA is irrelevant and that a thread no longer has
to wait for any other thread once it reaches a barrier. We have the following.

Theorem 7.1.1. Let P be a kernel program. If for each σv and σA it holds that all reductions
(σv,σA,P)→s,? · · · →s,? · · · are finite, then P terminates under the semantics of Figure 7.1.

Proof. Suppose the contrary, then there exists an infinite reduction ρ of P. As the number of
threads is finite, there is a thread t that is selected an infinite number of times by rule STEP. We
construct an infinite reduction for t under→s,?: (i) for each application of STEP selecting t apply
the over-approximating version of the thread-level rule employed and (ii) for each application
of rule BARRIER employ the over-approximating barrier rule. The over-approximating rules
fire, as (i) the existential quantification over all array stores σA ensures that e can be evaluated
precisely as in ρ and as (ii) the thread-level barrier rule essentially skips a barrier. Hence, we
have an infinite reduction for t under→s,?, contradiction.

A theorem related to the one above underpins the soundness of GPUVerify, where shared
state abstraction allows race-freedom to be verified by considering just two arbitrary threads [7].
Observe that the theorem only modifies the operational semantics; kernel programs are left
unchanged. Furthermore, the reverse of the theorem does not hold: termination might depend
on shared memory sub-expressions evaluating to specific values.
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7.2 Experimental Evaluation

To evaluate the effectiveness of Theorem 7.1.1, we adapted the KITTeL termination analysis
tool [22, 23] and applied it to a suite of 598 kernels, 381 of which have loops. To demonstrate
that our approach works out-of-the-box, we included the loop-free kernels in our evaluation.
The kernels have on average 86 lines of code and originate from nine sources:

• AMD Accelerated Parallel Processing SDK v2.6 [1] (78 kernels, 54 of which have loops).

• NVIDIA GPU Computing SDK v5.0 [43] (183 kernels, 109 of which have loops); we also
include 8 kernels from v2.0 of the SDK, 7 of which have loops.

• C++ AMP Sample Projects [42] (20 kernels, 16 of which have loops)

• The gpgpu-sim benchmarks [3] (33 kernels, 24 of which have loops)

• The Parboil benchmarks v2.5 [50] (25 kernels, 19 of which have loops)

• The Rodinia benchmark suite v2.4 [14] (36 kernels, 24 of which have loops)

• The SHOC benchmark suite [20] (87 kernels, 53 of which have loops)

• The PolyBench/GPU benchmark suite [27] (64 kernels, 49 of which have loops)

• Rightware Basemark CL v1.1 [49] (64 kernels, 26 of which have loops)

Each suite is publicly available except for Basemark CL which was provided to us under an
academic license. The collection covers all the publicly available GPU benchmark suites we are
aware of. The kernel counts above do not include 5 kernels that we manually removed because
they use CUDA surfaces or thread fences [44], which we currently do not support.

KITTeL The KITTeL termination analysis tool [22, 23] consists of a front-end, llvm2KITTeL,
which takes llvm bitcode1 and translates this into an integer-based rewrite system. The back-end
automatically tries to prove termination of the generated rewrite system.

We adapted llvm2KITTeL to handle kernels (compiled to bitcode by Clang2); we did not
make any changes to the termination analysis back-end. As llvm2KITTeL models only a single
thread and already abstracts from most memory operations (yielding nondeterministic values
for loads from memory), the changes we needed to make were minimal. To summarise: (i) we
ensured that llvm2KITTeL abstracts loads even in cases where it usually does not (e.g., when
a pointer points to a unique global variable representing a single integer), (ii) we disabled the
hoisting of loop-invariant loads from loops (due to concurrency the loaded value might differ
between loop iterations), and (iii) we made llvm2KITTeL aware of the fact that the number of
threads executing a kernel is constant for the duration of an execution (the number of threads
is often referred to in loop guards; hence, awareness that this number is constant—or at least
bounded—is often critical for showing termination).

1http://llvm.org/
2http://clang.llvm.org/
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Figure 7.2: Cumulative histogram showing the time taken to prove termination of the kernels
with loops

Loop Invariants Currently, KITTeL does not infer loop invariants that may be needed
for proving termination. We provided these invariants by hand and proved them correct with
GPUVerify prior to running our experiments. In principle we could extend GPUVerify’s invariant
inference engine [7] to generate the needed invariants; this would require infrastructure to feed
the generated invariants into KITTeL.

We required loop invariants stating: (i) the loop counter must be positive (31 kernels), (ii)
the step value for the loop counter is positive (18 kernels), (iii) the loop counter is always smaller
than or equal to a value which is subtracted from it in the loop guard (2 kernels).

Experimental Setup All experiments were conducted on a Mid 2009 MacBook Pro with
a 2.53GHz Intel Core 2 Duo and 4GB RAM running OS X 10.9.2 and Clang/llvm 3.4. The
reported times are averages over three runs and include the time needed to compile a kernel into
bitcode. The timeout used was 10 minutes. We adapted llvm2KITTeL as described above and
always invoked the tool with its -increase-strength option—turning left and right shifts
into multiplications and divisions, respectively. The latter facilitates termination analysis of
kernels where the loop counter is being shifted. The SMT solver used with KITTeL was Z3
v4.3.1. Both llvm2KITTeL and KITTeL were downloaded on 21-04-2014.3

Results Unsurprisingly, KITTeL managed to prove termination of all 217 loop-free kernels.
On average termination of these kernels was shown in 0.63s and the maximum time required
was 6.15s. Six of the kernels needed over 1s; this was either due to a long compilation time or
the kernel consisting of a large number of subroutines.

Of the 381 kernels with loops, 346 could be shown terminating. On average termination
was shown in 7.23s and the maximum time needed was 254.17s (see also Figure 7.2). Of the 35
kernels for which termination could not be shown, 31 reached the timeout of 10 minutes. In 4
cases KITTeL indicated that the constructed rewrite system was nonterminating (this does not
imply that the original kernels are nonterminating, as the constructed rewrite system in general
over-approximates the behaviour of a thread).

3https://github.com/s-falke/{llvm2kittel,kittel-koat}
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We manually inspected the 35 kernels to see why termination could not be shown. All
4 cases where KITTeL indicated nontermination would require reasoning over floating point
numbers. In 4 other cases built-in atomic increment operations would need to be modelled
as returning monotonically increasing values—instead of arbitrary ones, as is currently the
case. In 19 cases termination would require reasoning about shared memory and, hence, the
over-approximation from Theorem 7.1.1 is too coarse.

The above leaves 8 kernels, all of which timed out. Of these, 2 could be shown terminating
using a very coarse over-approximation of division—yielding unconstrained nondeterministic
values. One kernel could be shown terminating with llvm2KITTeL’s �only-loop-conditions
option, which abstracts all basic blocks except those from which loops can be exited.

In the case of 2 kernels the function bodies were very large which resulted in a timeout
in llvm2KITTeL (these were the only timeouts in llvm2KITTeL). In the 3 remaining cases a
timeout occurred in KITTeL, although the generated rewrite system was terminating.

7.3 Conclusion

We have described an approach for proving termination of massively parallel GPU kernels by
reducing the termination problem for these kernels to a sequential termination problem. With
the help of an adapted version of KITTeL the reduction allowed us to prove termination of 94%
of the kernels in our benchmark set and of 91% of the kernels with loops.

As part of future work we would like to automatically infer loop invariants that are required
for proving termination. Moreover, we would like to investigate whether performance can be
improved by outlining—as opposed to inlining—loops into separate procedures.
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