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1 Executive Summary
This deliverable presents novel research and development results on techniques for the ver-
ification of PENCIL programs. First of all, we describe the formal semantics of PENCIL.
This semantics incorporates checks on the PENCIL annotations independent and ivdep, i.e.,
if a program violates these annotations, its semantics is not defined. Second, we sketch how
permission-based separation logic can be used to verify statically that a PENCIL program
respects its loop annotations, i.e., when a program can be verified, its behaviour is defined and
different from error. Finally, the last part of this deliverable investigates whether our ideas about
PENCIL verification also can be applied to OpenMP.
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2 Introduction
In recent years, massively parallel accelerator processors, primarily graphics processing units
(GPUs) from companies such as AMD and NVIDIA, and based on designs from ARM, have
become widely available to end-users. Accelerators offer significant compute power at a low
cost, and tasks such as media processing, medical imaging and eye-tracking can be accelerated
to beat CPU performance by orders of magnitude.

However, low-level languages working directly on the accelerator architecture are not well
suited to productive, structured programming of accelerator applications. Therefore, within the
consortium the high-level accelerator programming language PENCIL is developed. PENCIL
will be suitable to allow straightforward translation from different DSLs, and it supports
downstream compilation into extremely efficient low-level GPU code.

Since GPU applications are used in many different areas, such as medical image processing
and media processing, software errors can have serious consequences for safety or cause
significant financial damage. Therefore, it is important that the PENCIL programming language
has a formal semantics, and is supported by thorough verification techniques. Moreover, these
verification techniques should be related to verification techniques for the low-level code,
such as the verification techniques for OpenCL presented in Deliverable D6.2. This enables
to establish verification of an OpenCL program from the verification of the corresponding
PENCIL program. In particular, the handwritten annotations that are needed for the verification
of PENCIL programs can be compiled into suitable specifications for the resulting OpenCL
program.

Chapter 3 provides a formal semantics for a core of the PENCIL language. The semantics
can be straightforwardly extended to full PENCIL, but at the price of clarity of presentation.
The semantics keeps track of the variables read and written so far during program evaluation (in
read and write sets). Moreover, to be able to identify loop dependences, within a loop, a stack of
these read and write sets is maintained, to keep track of the variables that are read and written
during the different iterations of a loop. The rules use the stack of read and write sets to establish
the absence of unwanted dependences. If the loop has dependences that are not allowed by its
annotation, then the behaviour is defined to be error. The semantics rules guarantee that

• the behaviour of loops annotated with independent is different from error, only when
there are no loop-carried dependences, and

• the behaviour of loops annotated with ivdep is different from error, only when there are
no backward loop-carried dependences.

Chapter 4 then sketches our idea for verification of PENCIL programs using permission-
based separation logic. We focus in particular on the verification of the loop annotations
independent and ivdep. Permissions are used to specify for each iteration of the loop which
variables may be written and read. Additionally, it is specified how permissions are transferred
between the different iterations. When a loop is independent, it does not need to transfer any
permissions between different loop iterations. When a loop is annotated with ivdep, it may
transfer permissions to next iterations of the loop. Different transfer patterns are identified that
characterise forward and backward dependences. We also describe how we plan to develop tool
support for our specification technique.

Finally, Chapter 5 investigates applicability of our results to OpenMP, and it discusses
related work on verification of OpenMP.
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Since the work in this task was dependent on the development of PENCIL, the techniques
developed so far are only pen-and-paper techniques, and no results have been published yet.
However, in the next period, we plan to develop tool support for our techniques.

CARP-UT-RP-001-v1.0 6 6 December 2013
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3 Formal Semantics of PENCIL
To enable formal verification of PENCIL, it is essential that we precisely pin down the meaning
of PENICL programs. To this end we define an operational semantics for the language. We
focus on a subset of the PENCIL language—“idealised PENCIL”—which figures the features
of PENCIL that make it unique as a language. The differences with the full language are either
easily or straightforwardly removed, but only at the expense of clarity.

The differences with the full language are as follows:

• The syntax deviates somewhat from the syntax of C and PENCIL. The most notable
difference is the use of the keyword var in variable declarations.

• The language is not typed.

• The operators that may occur in expressions are not explicitly defined.

• Short-circuit evaluation of Boolean expressions is omitted.

• Variables cannot be declared and initialised simultaneously.

• Multi-dimensional arrays cannot be declared.

• While-loops are omitted.

• No functions can be defined or called. Observe that this implies that there are no access
summaries. To be able to still define the semantics of access summaries, each PENCIL
program is equipped with an access summary.

In addition to the above, we assume that each variable is declared at most once. That is,
variables cannot go out of scope due to variable shadowing.

3.1 Grammar

The grammar of idealised PENCIL is presented in Figure 3.1. Except for the access summaries,
the correspondence with the actual PENCIL language should be obvious. Recall that variable
declarations employ the var keyword. Moreover, recall that we do not explicitly specify the
operators that may occur in expressions; in the grammar op is used as a placeholder.

Although we leave the form of expressions mostly unspecified, we assume we have at least
the constants true and false, with the obvious meaning.

As the ordering of the accesses as described by access summaries is irrelevant, we abstract
from the definition of access summaries as functions. Instead, we define them in terms of tuples
of sets. The tuples are 4-tuples consisting of the following components:

• A set V that specifies the variables whose accesses should be tracked; only variables that
are in scope at the end of the program may occur in this set. The set, which does not occur
in actual PENCIL, compensates for the lack of function parameters, which in the case of
actual PENCIL implicitly specify which variables should be tracked.

• A set U that specifies which of the variables from V are used, i.e., may be read from.

CARP-UT-RP-001-v1.0 7 6 December 2013
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pencil ::= pencil access{stmts}
stmts ::= stmt ;〈stmts〉
stmt ::= varname

| varname[expr]
| kill(name)
| kill(name[expr])
| assert(expr)
| assume(expr)
| name= expr
| name[expr] = expr
| if(expr){stmts}else{stmts}
| 〈annotation〉 for(varname= expr;

name [<|≤|>|≥]expr;
name+= expr)

{stmts}
| break
| continue

expr ::= constant
| expropexpr
| name
| name[expr]

access ::= (V ,U ,D ,M )
annotation ::= independent reduction∗

| ivdep
reduction ::= reduction(op : name∗)
name ::= any valid C name

Figure 3.1: The grammar of idealised PENCIL

• A set D that specifies which of the variables from V are defined, i.e., must be written to.

• A set M that specifies which of the variables from M may be defined, i.e., may be
written to.

Remark that any variable from V which does not occur in U may not be read from. Likewise,
any variable from V that does not occur in either D or M may not be written to.

3.2 Semantics of Expressions

The operational semantics of expressions is defined in a big-step operational style. Given a tuple
〈σ ,e〉 consisting of a store σ , i.e., a mapping from variables to values, and an expression e, the
operational semantics defines the evaluation of e under σ . The values in the store can be both
scalar (in the case the value of a scalar variable is being represented) and maps from integers to
scalars (in case the value of an array is being represented).

The evaluation a tuple 〈σ ,e〉 either results in a triple 〈σ ′,v,(R,W )〉 or in a special value
error indicating that an error occurred during evaluation.
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Given a tuple 〈σ ,e〉, the elements of the triple 〈σ ′,v,(R,W )〉 are as follows:

• σ ′ is the store σ after evaluation of e.

• v is the value to which e evaluates.

• (R,W ) specifies which variables were read and written during evaluation of e. The sets
R and W are called the read and write set, respectively.

The rules for evaluating expressions are as follows:

• A constant c is evaluated by yielding the value of the constant:

` 〈σ ,c〉 ⇓ 〈σ ,c,( /0, /0)〉
CONSTANT

As no variables are accessed, the read and write sets are empty.

• An operator expression e1 ope2 is evaluated by first evaluating the expression e1 on the
left-hand side of the operator, next evaluating the expression e2 on the right-hand side of
the operator, and finally applying the operator to the values obtained1:

` 〈σ ,e1〉 ⇓ 〈σ ′,v1,(R,W )〉 ` 〈σ ′,e2〉 ⇓ 〈σ ′′,v2,(R
′,W ′)〉

` 〈σ ,e1 ope2〉 ⇓ 〈σ ′′,v1 opv2,(R ∪R ′,W ∪W ′)〉
OP

Recall from above we do not treat short-circuit evaluation of Boolean expressions. The
read and write sets are simply the unions of the read and write sets obtained during
evaluation of e1 and e2.

Evaluation of an operator expression can fail both during evaluation of the left- and
right-hand side. This gives rise to two additional rules:

` 〈σ ,e1〉 ⇓ error

` 〈σ ,e1 ope2〉 ⇓ error
OP-ERR-1

` 〈σ ,e1〉 ⇓ 〈σ ′,v1,(R,W )〉 ` 〈σ ′,e2〉 ⇓ error

` 〈σ ,e1 ope2〉 ⇓ error
OP-ERR-2

• A variable n is evaluated by obtaining its value from the store σ . Here, n ∈ Dom(σ)
denotes that n occurs in the store (i.e., is in scope).

n ∈ Dom(σ)

` 〈σ ,n〉 ⇓ 〈σ ,σ(n),({n}, /0)〉
VAL

As n is read, the read set becomes equal to {n}. The write set is empty, as not variable is
updated during the evaluation.

Evaluation of a variable is erroneous in case the variable does not occur in the store (i.e.,
is out of scope). This can happen, e.g., because the variable was not declared or because
the variable was killed (see the discussion of this statement below):

n 6∈ Dom(σ)

` 〈σ ,n〉 ⇓ error
VAL-DOM-ERR

1Observe that the evaluation order of the left- and right-hand side is unspecified in C and, hence, in PENCIL. We
could introduce additional rules that make different evaluation orders possible, but we do not do so for brevity.
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• An array access n[e] is evaluated by first evaluating the expression e, obtaining a value v,
and next retrieving the value of n[v] from the store. This requires both the array n and the
array element v to occur in the store. It may happen that an array element does not occur
in the store, because kill may have been applied to it. Recall that array variables are maps
from integers to scalars, hence Dom(σ ′(n)) is well-defined.

` 〈σ ,e〉 ⇓ 〈σ ′,v,(R,W )〉 n ∈ Dom(σ ′) v ∈ Dom(σ ′(n))

` 〈σ ,n[e]〉 ⇓ 〈σ ′,σ ′(n)(v),({n[v]}∪R,W )〉
VAL-ARR

The read set combines {n[v]} with the variables being read during evaluation of e. The
write set is simply taken from the evaluation of e.

As expression evaluation may fail and as either n or n[v] may not occur in the store, there
are three additional rules:

` 〈σ ,e〉 ⇓ error

` 〈σ ,n[e]〉 ⇓ error
VAL-ARR-ERR

` 〈σ ,e〉 ⇓ 〈σ ′,v,(R,W )〉 n 6∈ Dom(σ ′)

` 〈σ ,n[e]〉 ⇓ error
VAL-ARR-DOM-ERR

` 〈σ ,e〉 ⇓ 〈σ ′,v,(R,W )〉
n ∈ Dom(σ ′) v 6∈ Dom(σ ′(n))

` 〈σ ,n[e]〉 ⇓ error
VAL-ARR-DOM-N-ERR

Observe that the rules as given above always yield a triple 〈σ ,v,(R, /0)〉, i.e., the store is left
unchanged and the write set is always empty. This would change if we would allow function
calls to occur in expressions. To keep this latter fact explicit, we choose to include σ ′ and W in
the triple 〈σ ′,v,(R,W )〉.

3.3 Semantics of Programs and Statements

The operational of programs and statements is defined in a small-step operational fashion. This
involves a 4-tuple 〈σ ,ss,(R,W ),(L ,C )〉, where the components are as follows:

• σ is a store, i.e., a mapping from program variables to values.

• ss is the sequence of statements to be evaluated.

• (R,W ) is a pair of sets specifying which variables have been read and written so far
during program evaluation. The sets R and W are called, respectively, the read and write
sets.

• (L ,C ) is a tuple of stacks. The elements of these stacks are (R,W )-pairs. The stacks are
used to track, respectively, which variables have been accessed during previous iterations
and the current iteration of the loop-nest currently being evaluated.

The operational meaning of an idealised PENCIL program

pencil(V ,U ,D ,M ){ss}

CARP-UT-RP-001-v1.0 10 6 December 2013
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is now defined as the result of evaluating

〈σe,ss,( /0, /0),(empty,empty)〉

according to the rules given below. Here, σe denotes the empty store, which assumes all variables
to be out of scope, i.e., n 6∈ Dom(σe) for all n. Moreover, empty denotes an empty stack.

3.3.1 Preliminaries

Stack Handling To handle the stacks in our operation semantics, we need some additional
notation. Given a stack S of pairs (Sr,Sw), we define:

• The function push(S ,(R,W )) yields a stack S ′ which is identical to the stack S
except that (R,W ) was added as the top-most element.

• The function top(S ) yields the top-most element of S .

• The function pop(S ) yields a stack S ′ which is equal to the stack S except that the
top-most element has been removed.

• The function update top(S ,(R,W )) yields a stack S ′ which is equal to the stack S
except that the top-most element (Sr,Sw) has been replaced by (Sr ∪R,Sw∪W ). Thus
we have

update top(S ,(R,W )) = push(pop(S ),(Sr ∪R,Sw∪W ))

with (Sr,Sw) = top(S ).

• The function clear top(S ) yields a stack S ′ which is equal to the stack S except that
the top-most element has been replaced by ( /0, /0). Thus we have

clear top(S ) = push(pop(S ),( /0, /0)) .

• The function add(S ,(R,W )) yields a stack S ′ equal to the stack S but with each pair
(Sr,Sw) from S replaced by (Sr ∪R,Sw∪W ).

Loop-Carried Dependence Handling To handle loop-carried dependences in a PENCIL
program, we need to establish for all loops and all iterations of those loops whether:

a. a variable that has been written in the current loop iteration was either read or written in a
previous loop iteration, or

b. a variable that has been read or written in the current loop iteration was written in a
previous loop iteration.

Formally, given the accumulated read and write sets (Lr,Lw) from the previous iterations of
some loop and the read and write sets (Cr,Cw) from the current loop iteration we define:

dependence((Lr,Lw),(Cr,Cw)), ((Lr ∪Lw)∩Cw)∪ (Lw∩ (Cr ∪Cw)) .
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Given that n is the loop-counter of the inner-loop at the end of whose iteration we currently
are, then checking that there are no loop-carried dependences with previous iterations of the
inner-loop amounts to checking that:

indep(L ,C ,N), (dependence(top(L ),top(C ))\N) = /0 .

Here, N contains n and the reduction variables of the current loop. Moreover, top(L ) is the
accumulated (R,W )-pair of all previous loop iterations of the current inner-loop. And, top(C )
is the (R,W )-pair of the current loop iteration.

Let m ∈ Sr ∪Sw and let stmts((Sr,Sw),m) denote the statements responsible for adding m
to (Sr,S2) (in the PENCIL program under consideration). Moreover, let T1 and T2 be sets of
statements, and write T1 ≺ T2 if each statement in T1 occurs textually before all statements in T2.
Given that n is the loop-counter an inner-loop at the end of whose iteration we currently are,
then checking that there are no backward loop-carried dependences with previous iterations of
the inner-loop amounts to checking:

back indep(L ,C ,N), ∀m ∈ (dependence(top(L ),top(C ))\N) :

stmts(top(L ),m)≺ stmts(top(C ),m)

Here, N = {n}.

3.3.2 Termination and Out-of-Scope Variables

Following the grammar of idealised PENCIL, we will now discuss the operational semantics.
We start with termination and the treatment of out-of-scope variables.

• If there is no statement to be evaluated, i.e., if the sequence of statements is empty
(denoted ε), then we terminate. Upon termination it is checked that the access summary
has been adhered to during evaluation and the final store is returned:

R ∩V ⊆U D ⊆W ∩V W ∩V ⊆D ∪M

` 〈σ ,ε,(R,W ),(L ,C )〉 → σ
TERMINATE

In case the access summary is not being adhered to, this can can have three causes, which
of which results in a transition to the error state error. Here, either some variable from
the read set (which also occurs in V ) does not occur in the used set U :

R ∩V 6⊆U

` 〈σ ,ε,(R,W ),(L ,C )〉 → error
TERMINATE-READ-ERR

Or, some variable from the defined set D does not occur in the write set:

D 6⊆W ∩V

` 〈σ ,ε,(R,W ),(L ,C )〉 → error
TERMINATE-DEF-ERR

Or, some variable from the write set (which also occurs in V ) does not occur in the
defined set D or the maybe defined set M :

W ∩V 6⊆D ∪M

` 〈σ ,ε,(R,W ),(L ,C )〉 → error
TERMINATE-WRITE-ERR
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• To handle the scoping of variables, we introduce an addition keyword clear scope. This
keyword is not supposed to be specified by programmers; it only exists to define the
operational semantics. Evaluation of clear scope removes all variables that are no longer
in scope at the point the statement is executed from the store, the read and write sets, and
stacks:

σ
′ is identical to σ ,

except that n 6∈ Dom(σ ′) for any variable n not in scope
R ′, W ′, L ′, and C ′ are identical to R, W , L , and C ,

except that all out-of-scope variables have been removed

` 〈σ ,clear scope; ss,(R,W ),(L ,C )〉 → 〈σ ′,ss,(R ′,W ′),(L ′,C ′)〉
CLEAR

3.3.3 Variable and Array Declarations

Variable and array declarations extend the store by mapping the declared variable or array to a
value or values. Initially, the values are arbitrary, which we indicate by ?.

• Evaluation of a variable declaration varn extends the store with n:

` 〈σ ,varn; ss,(R,W ),(L ,C )〉 → 〈σ [n 7→ ?],ss,(R,W ),(L ,C )〉
VAR

Observe that declaring a variable does not mean it is being written, i.e., the write sets and
stacks are left unchanged.

• Evaluation of an array declaration varn[e] requires evaluation of the expression e, obtain-
ing a value v. Once the expression has been evaluated the store is extended with an array
n of size v, all elements of which are given an arbitrary value ((?)0..v−1):

` 〈σ ,e〉 ⇓ 〈σ ′,v,(R ′,W ′)〉
R∗ = R ∪R ′ W ∗ = W ∪W ′

C ∗ = add(C ,(R ′,W ′))

` 〈σ ,varn[e]; ss,(R,W ),(L ,C )〉
→ 〈σ ′[n 7→ (?)0..v−1],ss,(R∗,W ∗),(L ,C ∗)〉

VAR-ARR

As variables may be read or written during evaluation of the expression e, the read and
write sets and the stack for the current nested loop iterations are updated appropriately.

In case evaluation of the expression yields error, we transition to the error state:

` 〈σ ,e〉 ⇓ error

` 〈σ ,varn[e]; ss,(R,W ),(L ,C )〉 → error
VAR-ARR-ERR

3.3.4 Kill Statements

The kill statement removes the specified variable, array, or array element from the store. Thus,
e.g., after evaluating kill(n) we have that n 6∈ Dom(σ), where σ is the store after evaluation of
the statement. As a result, accessing n later in the evaluation will result in a transition to error,
as it will be checked that n ∈ Dom(σ).
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• Evaluating kill(n) with n either a variable or an array maps n to the undefined value ⊥ in
the store:

` 〈σ ,kill(n); ss,(R,W ),(L ,C )〉 → 〈σ [n 7→ ⊥],ss,(R,W ),(L ,C )〉
KILL

Observe that killing a variable or array does not mean it is being read or written, i.e., the
read and write sets and stacks are left unchanged. Moreover, observe that it does not
matter whether n ∈ Dom(σ); it is valid to evaluate kill in case n is not defined.

• Evaluating kill(n[e]) with n an array evaluates the expression e, obtaining a value v, and
map n[v] to ⊥:

` 〈σ ,e〉 ⇓ 〈σ ′,v,(R ′,W ′)〉 n ∈ Dom(σ ′)
R∗ = R ∪R ′ W ∗ = W ∪W ′

C ∗ = add(C ,(R ′,W ′))

` 〈σ ,kill(n[e]); ss,(R,W ),(L ,C )〉
→ 〈σ ′[n(v) 7→ ⊥],ss,(R∗,W ),(L ,C ∗)〉

KILL-ARR

As variables may be read or written during the evaluation of the expression e, the read and
write sets and the stack for the current nested loop iterations are updated appropriately.

Failure occurs in case evaluation of the expression results in error:

` 〈σ ,e〉 ⇓ error

` 〈σ ,kill(n[e]); ss,(R,W ),(L ,C )〉 → error
KILL-ARR-ERR

Evaluating the statement also fails in case the array n does not exist:

` 〈σ ,e〉 ⇓ 〈σ ′,v,(R ′,W ′)〉 n 6∈ Dom(σ ′)

` 〈σ ,kill(n[e]); ss,(R,W ),(L ,C )〉 → error
KILL-ARR-DOM-ERR

3.3.5 Assert and Assume

The assert and assume statements check whether the specified expression evaluates to true,
after which evaluation continues with the remaining statements. In case the expression evaluates
to false a transition to the error state occurs.

• Evaluation of assert(e) with e evaluating to true lets evaluation continue with the remain-
ing statements ss:

` 〈σ ,e〉 ⇓ 〈σ ′, true,(R ′,W ′)〉
R∗ = R ∪R ′ W ∗ = W ∪W ′

C ∗ = add(C ,(R ′,W ′))

` 〈σ ,assert(e); ss,(R,W ),(L ,C )〉 → 〈σ ′,ss,(R∗,W ),(L ,C ∗)〉
ASSERT-T

As variables may be read or written during the evaluation of the expression e, the read and
write sets and the stack for the current nested loop iterations are updated appropriately.

In case the expression evaluates to false, we transition to the error state:

` 〈σ ,e〉 ⇓ 〈σ ′, false,(R ′,W ′)〉
` 〈σ ,assert(e); ss,(R,W ),(L ,C )〉 → error

ASSERT-F
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Moreover, in case evaluation of the expression yields error, we also transition to the error
state:

` 〈σ ,e〉 ⇓ error

` 〈σ ,assert(e); ss,(R,W ),(L ,C )〉 → error
ASSERT-ERR

• An assume statement is simply rewritten to an assert statement to obtain the same
behaviour as for asserts:

` 〈σ ,assume(e); ss,(R,W ),(L ,C )〉
→ 〈σ ,assert(e); ss,(R,W ),(L ,C )〉

ASSUME

We rewrite assumes to asserts, because we would like to check that the validity of the
statement (like in the case of every other PENCIL-specific construct).

3.3.6 Assignments

Assignments update the store after evaluating the expression specified in the assignment.

• An assignment n = e evaluates e, obtaining v, and maps n to v in the store:

` 〈σ ,e〉 ⇓ 〈σ ′,v,(R ′,W ′)〉 n ∈ Dom(σ)
R∗ = R ∪R ′ W ∗ = W ∪W ′∪{n}

C ∗ = add(C ,(R ′,W ′∪{n}))
` 〈σ ,n = e; ss,(R,W ),(L ,C )〉

→ 〈σ ′[n 7→ v],ss,(R∗,W ∗),(L ,C ∗)〉

ASSIGN

As variables may be read or written during evaluation of the expression e, the read and
write sets and the stack for the current nested loop iterations are updated appropriately.
And, similarly n is added, as it is being written.

Evaluation fails in case evaluation of the expression fails:

` 〈σ ,e〉 ⇓ error

` 〈σ ,n = e; ss,(R,W ),(L ,C )〉 → error
ASSIGN-ERR

Evaluation of the assignment also fails in case n does not occur in the store:

` 〈σ ,e〉 ⇓ error n 6∈ Dom(σ)

` 〈σ ,n = e; ss,(R,W ),(L ,C )〉 → error
ASSIGN-DOM-ERR

• An assignment n[e1] = e2, assigning a value to an array element, evaluates e2, obtaining
v2, and next evaluates e1 to determine to which array element v2 should be assigned:

` 〈σ ,e2〉 ⇓ 〈σ ′,v2,(R
′,W ′)〉 ` 〈σ ′,e1〉 ⇓ 〈σ ′′,v1,(R

′′,W ′′)〉
n ∈ Dom(σ ′′) v1 ∈ Dom(σ ′′(n))

R∗ = R ∪R ′∪R ′′ W ∗ = W ∪W ′∪W ′′∪{n[v1]}
C ∗ = add(C ,(R ′∪R ′′,W ′∪W ′′∪{n[v1]}))

` 〈σ ,n[e1] = e2; ss,(R,W ),(L ,C )〉
→ 〈σ ′′[n(v1) 7→ v2],ss,(R∗,W ∗),(L ,C ∗)〉

ASSIGN-ARR
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As variables may be read or written during evaluation of the expressions e1 and e2, the read
and write sets and the stack for the current nested loop iterations are updated appropriately.
And, similarly n[e1] is added, as it is being written.

The assignment fails in case evaluation of e2 fails:

` 〈σ ,e2〉 ⇓ error

` 〈σ ,n[e1] = e2; ss,(R,W ),(L ,C )〉 → error
ASSIGN-ARR-ERR-2

Similarly, the assignment fails in the case e1 cannot be evaluated successfully:

` 〈σ ,e2〉 ⇓ 〈σ ′,v2,(R
′,W ′)〉 ` 〈σ ′,e1〉 ⇓ error

` 〈σ ,n[e1] = e2; ss,(R,W ),(L ,C )〉 → error
ASSIGN-ARR-ERR-1

The assignment also fails in the case n does not occur in the store:

` 〈σ ,e2〉 ⇓ error ` 〈σ ′,e1〉 ⇓ 〈σ ′′,v1,(R
′′,W ′′)〉

n 6∈ Dom(σ ′′)

` 〈σ ,n[e1] = e2; ss,(R,W ),(L ,C )〉 → error
ASSIGN-ARR-DOM-ERR

Finally, the assignment fails in the case the array element to which a value is to be assigned
is undefined (v1 6∈ Dom(σ ′′(n))). This is possible, as the array element may have been
killed:

` 〈σ ,e2〉 ⇓ 〈σ ′,v2,(R
′,W ′)〉 ` 〈σ ′,e1〉 ⇓ 〈σ ′′,v1,(R

′′,W ′′)〉
n ∈ Dom(σ ′′) v1 6∈ Dom(σ ′′(n))

` 〈σ ,n[e1] = e2; ss,(R,W ),(L ,C )〉 → error
ASSIGN-ARR

-DOM-N-ERR

3.3.7 If-Statements

If-statements evaluate a Boolean expression and branch accordingly.

• In case the expression e evaluates to true, the if-branch is taken, i.e., ss1 becomes the
expression to be evaluated next. Moreover, it is ensured that the scope is cleared of any
variables declared in ss1 after evaluation of ss1:

` 〈σ ,e〉 ⇓ 〈σ ′, true,(R ′,W ′)〉
R∗ = R ∪R ′ W ∗ = W ∪W ′

C ∗ = add(C ,(R ′,W ′))

` 〈σ , if(e){ss1}else{ss2}; ss,(R,W ),(L ,C )〉
→ 〈σ ′,ss1; clear scope; ss,(R∗,W ∗),(L ,C ∗)〉

IF-TRUE

As variables may be read or written during evaluation of the expression e, the read and
write sets and the stack for the current nested loop iterations are updated appropriately.

In case the expression e evaluates to false, the else-branch is taken, i.e., ss2 becomes the
expression to be evaluated next. Moreover, it is ensured that the scope is cleared of any
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variables declared in ss2 after evaluation of ss2:

` 〈σ ,e〉 ⇓ 〈σ ′, false,(R ′,W ′)〉
R∗ = R ∪R ′ W ∗ = W ∪W ′

C ∗ = add(C ,(R ′,W ′))

` 〈σ , if(e){ss1}else{ss2}; ss,(R,W ),(L ,C )〉
→ 〈σ ′,ss2; clear scope; ss,(R∗,W ∗),(L ,C ∗)〉

IF-FALSE

As variables may be read or written during evaluation of the expression e, the read and
write sets and the stack for the current nested loop iterations are updated appropriately.

Evaluation of the if-statement fails in case evaluation of the expression fails:

` 〈σ ,e〉 ⇓ error

` 〈σ , if(e){ss1}else{ss2}; ss,(R,W ),(L ,C )〉 → error
IF-ERR

3.3.8 For-Loops

Throughout we assume that the loop counter n is not killed in the loop body.
Evaluation of for-loops requires us to differentiate between the first loop iteration and later

loop iterations: At the beginning of the first iteration the loop counter needs to be initialised.
During later loop iterations it needs to be updated.

To differentiate between the initial loop iteration and later loop iterations we introduce
an underlined version of the for keyword: for. This underlined version is not supposed to be
specified by programmers; it only exists to define the operational semantics.

In case of an independentr annotation, Var(r) denotes the set which contains the variable
names that occur in the reduction declarations in r.

Recall from Figure 3.1 that annotations occur before before the for keyword and are generally
denoted by the letter a.

• On the first loop iteration n is initialised and the loop condition nope2 is checked. If the
loop condition evaluates to true, the statements ss′ from the loop body will be evaluated
next and the for-loop is added at the beginning of the sequence of statements to be
evaluated after the loop body. Moreover, it is ensured that the scope is cleared of any
variables declared in ss′ after evaluation of ss′2:

s = a for(varn = e1; nope2; n += e3){ss′}
` 〈σ ,e1〉 ⇓ 〈σ ′,v1,(R

′,W ′)〉
` 〈σ ′[n 7→ v1],nope2〉 ⇓ 〈σ ′′, true,(R ′′,W ′′)〉

R∗ = R ∪R ′∪R ′′ W ∗ = W ∪W ′∪W ′′∪{n}
C+ = add(C ,(R ′,W ′∪{n}))

L ∗ = push(L ,( /0, /0)) C ∗ = add(push(C+,( /0, /0)),(R ′′,W ′′))

` 〈σ ,s; ss,(R,W ),(L ,C )〉
〈σ ′′,ss′; clear scope; s; ss,(R∗,W ∗),(L ∗,C ∗)〉

FOR-TRUE

Above s denotes s with the for-keyword replaced by for. As variables may be read or
written during evaluation of the expressions e1 and e2, the read and write sets and the

2Observe that n is still in scope after evaluation of ss′.
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stack for the current nested loop iterations are updated appropriately. Similarly for the
loop counter n, as it is being written. As a new loop is entered, the L and C stacks are
extended with a new top element.

In the case the loop condition evaluates to false upon the first loop iteration, the loop is
not entered and evaluation continues with clearing n from the scope and evaluation of ss:

s = a for(varn = e1; nope2; n += e3){ss′}
` 〈σ ,e1〉 ⇓ 〈σ ′,v1,(R

′,W ′)〉
` 〈σ ′[n 7→ v1],nope2〉 ⇓ 〈σ ′′, false,(R ′′,W ′′)〉

R∗ = R ∪R ′∪R ′′ W ∗ = W ∪W ′∪W ′′∪{n}
C ∗ = add(C ,(R ′∪R ′′,W ′∪{n}∪W ′′))

` 〈σ ,s; ss,(R,W ),(L ,C )〉
→ 〈σ ′′,clear scope; ss,(R∗,W ∗),(L ,C ∗)〉

FOR-FALSE

As variables may be read or written during evaluation of the expressions e1 and e2, the read
and write sets and the stack for the current nested loop iterations are updated appropriately.
Similarly for the loop counter n, as it is being written.3

Evaluation of the loop fails in the case evaluation of the expression e1 fails:

s = a for(varn = e1; nope2; n += e3){ss′}
` 〈σ ,e1〉 ⇓ error

` 〈σ ,s; ss,(R,W ),(L ,C )〉 → error
FOR-ERR-1

Similarly, evaluation of the loop fails in the case evaluation of the expression e2 fails:

s = a for(varn = e1; nope2; n += e3){ss′}
` 〈σ ,e1〉 ⇓ 〈σ ′,v1,(R

′,W ′)〉
` 〈σ ′[n 7→ v1],nope2〉 ⇓ error

` 〈σ ,s; ss,(R,W ),(L ,C )〉 → error
FOR-ERR-2

• Upon any following loop iteration, the loop counter n is updated. And, if the loop
condition evaluates to true, the statements ss′ from the loop body will be evaluated
next and the for-loop is re-added to the sequence of statements to enable any following
iterations to be evaluated after the loop body. Moreover, it is ensured that the scope is
cleared of any variables declared in ss′ after evaluation of ss′.

In addition, as a loop iteration has been completed at this point, it is checked whether the
loop annotation is valid up to this point in the evaluation. In case of independent this
means that it is checked that there are no loop-carried dependences. In case of ivdep it is

3Observe that n will immediately be removed by the clear scope statement
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checked that there are no backward loop-carried dependences:

s = a for(varn = e1; nope2; n += e3){ss′}
` 〈σ ,n+ e3〉 ⇓ 〈σ ′,v3,(R

′,W ′)〉
` 〈σ ′[n 7→ v3],nope2〉 ⇓ 〈σ ′′, true,(R ′′,W ′′)〉

R∗ = R ∪R ′∪R ′′ W ∗ = W ∪W ′∪W ′′∪{n}
C+ = add(C ,(R ′,W ′∪{n}))

(a = independentr)⇒ indep(L ,C+,{n}∪Var(r))
(a = ivdep)⇒ back indep(L ,C+,{n})

L ∗ = update top(L ,top(C+))
C ∗ = add(clear top(C+),(R ′′,W ′′))

` 〈σ ,s; ss,(R,W ),(L ,C )〉
→ 〈σ ′′,ss′; clear scope; s; ss,(R∗,W ∗),(L ∗,C ∗)〉

UFOR-TRUE

As variables may be read or written during evaluation of the expressions e3 and e2, the read
and write sets and the stack for the current nested loop iterations are updated appropriately.
Similarly for the loop counter n which is written. As a new loop iteration is started, the
top element of C is merged with the top element of L . After this the top element of C is
cleared.

In the case the loop condition evaluates to false with clearing n from the scope and
evaluation of ss.

In addition, as a loop iteration has been completed at this point, it is checked whether the
loop annotation is valid up to this point in the evaluation. In case of independent this
means that it is checked that there are no loop-carried dependences. In case of ivdep it is
checked that there are no backward loop-carried dependences:

s = a for(varn = e1; nope2; n += e3){ss′}
` 〈σ ,n+ e3〉 ⇓ 〈σ ′,v3,(R

′,W ′)〉
` 〈σ ′[n 7→ v3],nope2〉 ⇓ 〈σ ′′, false,(R ′′,W ′′)〉

R∗ = R ∪R ′∪R ′′ W ∗ = W ∪W ′∪W ′′∪{n}
C+ = add(C ,(R ′,W ′∪{n}))

(a = independentr)⇒ indep(L ,C+,{n}∪Var(r))
(a = ivdep)⇒ back indep(L ,C+,{n})

L ∗ = pop(L ) C ∗ = add(pop(C+),(R ′′,W ′′))

` 〈σ ,s; ss,(R,W ),(L ,C )〉
→ 〈σ ′′,clear scope; ss,(R∗,W ∗),(L ∗,C ∗)〉

UFOR-FALSE

As variables may be read or written during evaluation of the expressions e3 and e2, the read
and write sets and the stack for the current nested loop iterations are updated appropriately.
Similarly for the loop counter n,as it is being written. As the loop is exited, the top
elements of L and C are removed.

Evaluation of the for-loop fails in case updating the loop counter fails:

s = a for(varn = e1; nope2; n += e3){ss′}
` 〈σ ,n+ e3〉 ⇓ error

` 〈σ ,s; ss,(R,W ),(L ,C )〉 → error
UFOR-ERR-3
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Similarly, evaluation fails in case evaluation of the loop condition fails:

s = a for(varn = e1; nope2; n += e3){ss′}
` 〈σ ,n+ e3〉 ⇓ 〈σ ′,v3,(R

′,W ′)〉 ` 〈σ ′[n 7→ v3],nope2〉 ⇓ error

` 〈σ ,s; ss,(R,W ),(L ,C )〉 → error
UFOR-ERR-2

If the loop is annotated with independent and a loop-carried dependence is detected, we
also transition to the error state:

s = a for(varn = e1; nope2; n += e3){ss′}
` 〈σ ,n+ e3〉 ⇓ 〈σ ′,v3,(R

′,W ′)〉
C+ = add(C ,(R ′,W ′∪{n}))

(a = independentr)∧¬indep(L ,C+,{n}∪Var(r))

` 〈σ ,s; ss,(R,W ),(L ,C )〉 → error
UFOR-INDEP-ERR

Similarly, if the loop is annotated with ivdep and a backward loop-carried dependence is
detected, we transition to the error state:

s = a for(varn = e1; nope2; n += e3){ss′}
` 〈σ ,n+ e3〉 ⇓ 〈σ ′,v3,(R

′,W ′)〉
C+ = add(C ,(R ′,W ′∪{n}))

(a = ivdep)∧¬back indep(L ,C+,{n})
` 〈σ ,s; ss,(R,W ),(L ,C )〉 → error

UFOR-IVDEP-ERR

3.3.9 Break and Continue Statements

Recall that break-statements exit from the innermost loop and that continue-statements continue
with the next iteration of the innermost loop.

• In case a break- or continue-statement is encountered, all remaining statements of the
innermost loop are ignored, i.e., statements are thrown away until a for-statement is
encountered:

s is not a for-statement s′ ∈ {break,continue}
` 〈σ ,s′; s; ss,(R,W ),(L ,C )〉

→ 〈σ ,s′; ss,(R,W ),(L ,C )〉

BREAK-CONTINUE

• In case a break-statement is encountered and the first statement in the continuation
is a for-statement, the loop is exited. That is, the for-statement is removed from the
continuation and the independent and ivdep annotations are checked. Moreover, the
scope is cleared from n any variables from the loop body.

s = a for(varn = e1; nope2; n += e3){ss′}
(a = independentr)⇒ indep(L ,C ,{n}∪Var(r))

(a = ivdep)⇒ back indep(L ,C ,{n})
C ∗ = pop(C ) L ∗ = pop(L )

` 〈σ ,break; s; ss,(R,W ),(L ,C )〉
→ 〈σ ,clear scope; ss,(R,W ),(L ∗,C ∗)〉

BREAK-FOR
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As the loop is exited, the top elements of L and C are removed.

If the loop is annotated with independent and a loop-carried dependence is detected, we
transition to the error state:

s = a for(varn = e1; nope2; n += e3){ss′}
(a = independentr)∧¬indep(L ,C ,{n}∪Var(r))

` 〈σ ,break; s; ss,(R,W ),(L ,C )〉 → error
BREAK-FOR-INDEP-ERR

Similarly, if the loop is annotated with ivdep and a backward loop-carried dependence is
detected, we transition to the error state:

s = a for(varn = e1; nope2; n += e3){ss′}
(a = ivdep)∧¬back indep(L ,C ,{n})
` 〈σ ,break; s; ss,(R,W ),(L ,C )〉 → error

BREAK-FOR-IVDEP-ERR

• In case a continue-statement is encountered and the first statement in the continuation
is a for-statement, the next loop iteration is started. The annotations do not need to be
checked in this case; this is taken care of by the for-rules. The scope is also cleared any
variables from the loop body.

s = a for(varn = e1; nope2; n += e3){ss′}
` 〈σ ,continue; s; ss,(R,W ),(L ,C )〉

→ 〈σ ,clear scope; s; ss,(R,W ),(L ,C )〉

CONTINUE-FOR
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4 Towards Static Verification of
PENCIL Programs
Parallelising compilers can detect loops that can be executed in parallel. However, this detection
is not perfect, and therefore the PENCIL language defines pragmas to declare that loops are
parallel. If a loop is declared parallel then the compiler is allowed to assume that it is indeed
parallel.

This chapter addresses the problem of how to verify that loops that are declared parallel
can indeed safely be implemented as parallel loops. The solution is to add specifications to the
PENCIL program, that when verified guarantee that the program can be parallelised without
changing its meaning. In addition, these specifications can express function properties and
requirements. For example, we can require all elements of an array to be positive and/or prove
that an array remains unmodified.

In order to simplify the presentation in this chapter, we limit ourselves to single loops. This
is not a real restriction and at the end of the chapter, we will explain how our approach can
be extended to nested loops. Below, we present some background information, and then we
introduce the specification language for parallel loops. Next, we sketch how we can implement
automated verification of the specifications. Finally, we conclude with future work.

4.1 Background

This section briefly discusses some background on the theory of loop dependences and separation
logic.

4.1.1 Loop Dependences

For a single loop with multiple statements, several types of loop dependences can be identified.
There exists a dependence from statement Ssrc to statement Ssink in the body of a loop if there
exist two iterations i and j of that loop, such that:

• Iteration i is before iteration j, i.e., i≤ j.

• If the iterations are the same (i = j) then Ssrc must syntactically occur before Ssink.

• Statement Ssrc on iteration i and statement Ssink on iteration j access the same memory
location.

• At least one of these accesses is a write.

The distance of a dependence is defined as the difference between j and i.
Loop dependences with distance 0, i.e., when i= j, are called loop independent dependences.

These dependences only have to be considered when the loop body has to be transformed, which
is out of the scope of this deliverable. In this case the loop iterations may be executed in any
arbitrary order.

Loop dependences with a positive distance are called loop-carried dependences and are
classified into forward and backward dependences. When Ssrc syntactically appears before Ssink
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(or if they are the same statement) there is a forward loop-carried dependence and when Ssink
syntactically appears before Ssrc there is a backward loop-carried dependence. The following
examples illustrate forward and backward loop-carried dependences.

Example 4.1.1 (Forward Loop Dependence)

for(int i=0;i<N;i++){
S1: a[i] = b[i] + 1;
S2: c[i] = a[i−1] + 2;

}

iteration = 1
S1: a[1] = b[1]+ 1;
S2: c[1] = a[0] + 2;

iteration = 2
S1: a[2] = b[2] + 1;
S2: c[2] = a[1] + 2;

Here, S1 is the source of the dependence and S2 is the sink. The ith element of the array a is
shared between iteration i and i−1, as visualised by the first and second iteration (on the right).

Example 4.1.2 (Backward Loop Dependence)

for(int i=0;i<N;i++){
S1: a[i] = b[i] + 1;
S2: c[i] = a[i+1] + 2;

}

iteration = 1
S1: a[1] = b[1] + 1;
S2: c[1] = a[2] + 2;

iteration = 2
S1: a[2] = b[2] + 1;
S2: c[2] = a[3] + 2;

Here, the sink of the dependence (S2) appears before the source (S1) in the body of the loop.
Therefore this is a backward loop-carried dependence.

The distinction between forward and backward dependences is important. Independent
parallel execution of a loop with dependences is always unsafe, because it may change the result.
However, only a loop with forward dependences can be vectorised, which is a special form
of parallelisation, in which the sequential loop is transformed into sequential loop with less
iterations, where every iteration of the new loop executes several iterations of the original loop
in lock-step.

Detecting dependences in code is a difficult task. Even under the assumption that index
expressions are linear1, the task ends up being equivalent to solving a system of Diophantine
equations, which is NP-complete [6]. Moreover, if the index expressions are more complicated
then the problem can easily end up being undecidable (use an undecidable problem as the index
expression) or simply unknown. For example, consider the loop

for(int i=0;i<N;i++)
{

A[t[i]]++;
}

Without knowing anything about t, we cannot decide whether there are loop dependences.
For safety, a compiler will typically assume there are dependences. However, sometimes the
programmer has extra information, for example it might be known that all values in the array t
are different, which would imply that there are no dependences at all in the program.

1All array index expressions are of the form A[a∗i+b], where a and b are constants and i is the loop variable.
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To support a programmer to make this knowledge explicit, PENCIL provides pragmas to
annotate loops that have forward dependences only and loops that have no dependences at
all. However, as these annotations are written by the programmer, they might be erroneous.
Therefore, we will provide a verification technique for these pragmas. Our verification technique
will be based on separation logic, which is briefly described next.

4.1.2 Separation Logic.

Separation logic is described in detail in Chapter 5 of Deliverable D6.2 as a way to reason about
OpenCL kernels. However, for the sake of completeness, we give a brief introduction here.

Separation logic [22] was originally developed as an extension of Hoare logic [9] to reason
about programs with pointers, as it allows to reason explicitly about the heap. In classical Hoare
logic, assertions are properties over the state and no distinction between variables on the heap
on variables on the stack can be made, while in separation logic, the state is explicitly divided in
the heap and a store related to the stack frame of the current method call. Separation logic is
also suited to reason modularly about concurrent programs [18]: two threads that operate on
disjoint parts of the heap do not interfere, and thus can be verified in isolation.

However, classical separation logic requires use of mutual exclusion mechanisms for all
shared locations, and it forbids simultaneous reads to shared locations. To overcome this,
Bornat et al. [4] extended separation logic with fractional permissions. Permissions, originally
introduced by Boyland [5], denote access rights to a shared location. A full permission 1
denotes a write permission, whereas any fraction in the interval (0,1) denotes a read permission.
Permissions can be split and combined, thus a write permission can be split into multiple read
permissions, and all of the read permissions can be joined into a write permission. In this way,
data race freedom of programs using different synchronisation mechanisms can be proven. The
set of permissions that a thread holds are often known as its resources.

We write access permissions as perm(e,π), where e is an expression denoting a memory
location and π is a fraction. To specify the behaviour of PENCIL programs that we are interested
in for this deliverable, it is sufficient to only distinguish between read and write permissions,
and the actually fraction of a read permission is irrelevant.

In separation logic there are two conjunction operators: boolean conjunction (&&) and
separating conjunction (∗∗). The latter is resource sensitive, the former is not. For example

perm(x, π) && perm(x, π) ≡ perm(x, π)
perm(x, π) ∗∗ perm(x, π) ≡ perm(x, 2 ·π)

To specify properties of the value stored at the location we just reference the location in our
formulas. Thus, we are forced to check that every expression is self-framed, i.e., we need to
check that only locations are accessed for which we have access permissions. This is different
from traditional separation logic, which uses the PointsTo primitive that has an additional
argument to denote the value stored at the location and cannot refer to the location otherwise.
However, it has been proven that both logics are equivalent [20].

4.2 A Specification Language for PENCIL

Since PENCIL is an add-on to C, the starting point for the specification language is separation
logic for C. This logic is known [25], therefore we will focus only on the extension needed
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for(i=0;i<N;i+=1)
/∗@

requires perm(a[i],1) ∗∗ perm(c[i],1) ∗∗ perm(b[i],1/2);
ensures perm(a[i],1) ∗∗ perm(c[i],1) ∗∗ perm(b[i],1/2);

@∗/
{

S1: a[i] = b[i] + 1;
S2: c[i] = a[i] + 2;

}

Listing 1: Specification of independent loops

for PENCIL, i.e., the ability to specify parallel loops. Finally, we will explain how to draw
conclusions about the validity of PENCIL pragmas from the validity of the loop specifications.

4.2.1 Specification of Parallel Loops

The traditional way of specifying the effect of a loop is by means of an invariant that has to hold
before and after the execution of each iteration in the loop. This works well for sequential loops,
but offers no insight into possible parallel execution. Instead we are going to take the point of
view that every iteration of the loop is executed in parallel. To be able to handle dependences,
we can specify restrictions on how the execution of the statements in the iterations is scheduled.
From this viewpoint, it is natural that each iteration is specified by its own contract that we call
its iteration contract. In the iteration contract, the pre-condition specifies the permissions and
resources that a particular iteration requires for execution and the post-condition specifies the
permissions and resources which are released after the execution of an iteration. Listing 1 gives
an example of an independent loop, specified by its iteration contract. The contract requires
that at the start of iteration i, permission to write both a[i] and c[i] is available, as well as
permission to read b[i]. The contract also ensures that these permissions are returned at the
end of iteration i. The iteration contract implicitly requires that the separating conjunction
of all iteration pre-conditions holds before the the first iteration start and that the separating
conjunction of all iteration post-conditions holds after the last iteration has completed, before
the program continues with the statement following the loop. In the example, the loop iterates
from 0 to N− 1, so the contract implies that before the loop, permission to write the first N
elements of both a and c must be available, as well as permission to read the first N elements of
b. The same permissions are ensured to be available after the loop has ended.

For specification of independent loops, the notion of iteration contract is sufficient to capture
all legal execution orders. To specify dependent loops, we need the ability to specify what
happens when due to a dependence the computations have the synchronise. During such a
synchronisation, permissions should be transferred from the iteration containing the source of
a dependence to the iteration containing the sink of that dependence. We also need the ability
to state properties of the memory for which permissions are transferred, in order to prove the
validity of the invariants needed for proving validity of the specification. To specify permission
transfer we introduce the send keyword:

//@ send φ to L, d;
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for(int i=0;i<N;i++)
/∗@

requires perm(a[i],1) ∗∗ perm(c[i],1) ∗∗ perm(b[i],1/2);
ensures perm(a[i],1/2) ∗∗ perm(c[i],1) ∗∗ perm(b[i],1/2);
ensures i>0 ==> perm(a[i−1],1/2);
ensures i==N−1 ==> perm(a[i],1/2);

@∗/
{

S1: a[i] = b[i] +1;
//@ send perm(a[i],1/2) to S2,1;
//% receive perm(a[i−1],1/2) from S1,−1;
S2: c[i] = (i?a[i−1]:0)+2;

}

Listing 2: Specification of a Forward Loop-Carried Dependence

This specifies a transfer of the permissions and properties denoted by the separation logic
formula φ to the statement labelled L in the iteration i+d, where i is the current iteration.

Below, we will give two examples that illustrate how loops are specified with send clauses.
The send clause alone completely specifies both how permissions are provided and used by the
iterations. However, to make the specifications more readable, we also mark the place where the
permission are used with a corresponding receive statement.

Listing 2 gives the annotated version of the program in Example 4.1.1, illustrating forward
dependence. Iteration i starts with full permission on a[i] and c[i] and read permission on
b[i]. The first statement is a write to a[i], which needs write permission. Except for the first
iteration, the second statement reads a[i−1], which is not allowed unless read permission is
available. Hence a send annotation is specified after the first assignment that transfers a read
permission on a[i] to the next iteration (and in addition, keeps the other half of the permission
itself). The post-condition of the iteration contract reflects this, as this ensures that the original
permissions on b[i] and c[i] are released, as well as the read permission on a[i], which was not
sent. Every iteration, except the first, receives a read permission on a[i−1]. The post-condition
of the iteration contract also specifies that this read permission is released. Finally, since the last
iteration cannot transfer a read permission on a[i], the iteration contract’s post-condition also
specifies that the last iteration returns this non-transferred read permission on a[i].

Listing 3 shows the annotated program for Example 4.1.2, illustrating a backward depen-
dence.

The specifications in both listings are valid. Hence every execution order of the loop bodies
that respects the order implied by the send annotations yields the same result as sequential
execution. In the case of the forward dependence example, vectorised execution of the loop
is such an order. For the backward dependence example, only sequential execution obeys the
ordering requirement.
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for( i=0;i<N;i++)
/∗@

requires i==0 ==> perm(a[0],1/2);
requires perm(a[i],1/2) ∗∗ perm(a[i+1],1/2) ∗∗ perm(c[i],1) ∗∗ perm(b[i],1/2);
ensures perm(a[i],1) ∗∗ perm(c[i],1) ∗∗ perm(b[i],1/2);
ensures i==N−1 ==> perm(a[i+1],1/2);

@∗/
{

//% receive perm(a[i],1/2) from S2, −1;
S1: a[i] = b[i] +1;
S2: c[i] = a[i+1]+2;
//@ send perm(a[i+1],1/2) to S1, 1;

}

Listing 3: Specification of a Backward Loop-Carried Dependence

Chalice Boogie Z3

Java PVL

Tool
VerCors

back ends

input languages
PENCIL

C,OpenCL

Common Object Language

Figure 4.1: VerCors tool architecture.

4.3 Verification of Parallel Loops by means of Encoding

This section explains how we will implement automated verification of the specifications
explained above in the VerCors tool set.

4.3.1 The VerCors Tool Set

The VerCors tool set implements thread-modular static verification of concurrent programs,
annotated with functional properties and heap access permissions. The tool supports both generic
multithreaded and vector-based programming models. In particular, it can verify multithreaded
programs written in Java, specified with JML, extended with separation logic. It can also verify
parallelisable programs written in a toy language that supports the characteristic features of
OpenCL.

Rather than building yet another verifier, the VerCors tool set leverages existing verifiers.
That is, it is designed as a compiler that translates specified programs to a simpler language.
These simplified programs are then verified by a third-party verifier. If there are errors then the
error messages are converted to refer to the original input code.
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Figure 4.1 shows the overall architecture of the tool. Its main input language is Java. For
prototyping, we use the toy language PVL, which is a very simple object-oriented language
that has been extended to express GPU kernels too. Moreover, it has a built-in specification
language that allows us to work on full functional verification of programs, including kernels.
The C language family front-end is work-in-progress, but will support OpenCL and PENCIL in
the near future. We mainly use Chalice [15], a verifier for an idealised concurrent programming
language, as our back-end, but for sequential programs we also use the intermediate program
verification language Boogie [2].

The main concept behind the verification of programs that have been specified with the
VerCors tool set is that those parts of the program whose verification is not directly supported by
the simpler language of the underlying verifier, are encoded as specified programs in the simpler
programming language in such a way that this results in the same verification conditions. For
example, let us assume for a moment that our back-end does not support any kind of loops and
consider the following variant of the Hoare Logic rule for loops:

{I∧b}S{I}
{I}while(b) invariant I{S}{I∧¬b}

LOOP

This rule states that for the program to be correct, the invariant I must be proven to hold just
before the loop, and after the loop it can be assumed that both the invariant and the negation of
the loop condition b can be assumed to be valid. In addition, the loop body must preserve the
invariant: it must hold that when the loop body is executed in a state where the invariant and the
loop condition hold, its execution ends in a state where the invariant holds.

If the underlying verifier does not support loops, a program as

Spre; while(b) invariant I { S } ; Spost ;

can be verified by encoding the loop as a method call to loop main:

Spre; loop main(); Spost;

where loop main is a method specified as follows:

/∗@
requires I;
ensures I∧¬b;

@∗/
void loop main();

This ensures that the pre- and post-condition of the loop are correctly required and assumed.
Moreover, preservation of the loop invariant by each iteration of the loop body is encoded

by verifying the following specified method:

/∗@
requires I∧b;
ensures I;

@∗/
void loop iteration(){

S;
}
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void program(){
Spre;
for(int i=0;i<N;i++)
/∗@

requires pre(i);
ensures post(i);

@∗/
{

S;
}
Spost;

}

Listing 4: Loop with an iteration contract.

The verification conditions for this method correspond precisely to the conditions that must be
checked for the loop body. As a result, if the transformed program can be verified with existing
tools then the original code satisfies its specifications too. Note that while the transformation
preserves logical correctness, the transformed code is no longer executable and hence unsuitable
for verification techniques other than static verification.

The following sections describe how we use similar encoding processes to encode the
different types of parallel loops.

4.3.2 Independent Parallel Loops

First we explain how to transform a specified program with independent parallel loops into a
specified program without parallel loops, in such a way that if the transformed program satisfies
its specification then the original program also satisfies its specification.

Listing 4 shows the pattern of a program with a parallel loop that has been specified with an
iteration contract. Proving that this program is correct requires that following proof obligations
are discharged:

• After Spre, the separating conjunction of all of the pre-conditions holds.

• The loop body S satisfies the iteration contract.

• The statement Spost can be proven correct, assuming that the separating conjunction of the
post-conditions holds.

We may encode these obligations as procedures (see Listing 5) by the following steps:

1. We replace the loop in the program with a call to a procedure loop main, whose arguments
are the free variables occurring in the loop. The contract of this procedure requires the
separating conjunction of all pre-conditions and ensures the separating conjunction of all
post-conditions. After this replacement, we can verify the program (host program) with
existing tools to discharge the first and last proof obligations.

2. To discharge the remaining proof obligation, we generate a procedure loop body, whose
arguments are the loop variable i plus the same arguments as loop main. The contract of

CARP-UT-RP-001-v1.0 29 6 December 2013



CARP

/∗@
requires 0 <= i && i < N;
requires pre(i);
ensures post(i);

@∗/
loop body(int i,int N,free(S)))
{

S;
}

/∗@
requires (\forall∗ int i;0 <= i && i < N;pre(i));
ensures (\forall∗ int i;0 <= i && i < N;post(i));

@∗/
loop main(int N,free(S)));

void program(){
Spre;
loop main(N,free(S));
Spost;

}

Listing 5: Encoded proof obligations for a loop with an iteration contract.

this procedure is the iteration contract of the loop body, preceded by a requirement that
states that the value of the iteration variable is within the bounds of the loop.

4.3.3 Vectorisable Parallel Loops

The previous section dealt with independent loops, this section extends the verification concept
to include loop dependences in general and forward loop dependences in particular. The latter
are important because loops with forward dependences can be vectorised, which makes it legal
to add the ivdep pragma in PENCIL.

In our specification language, dependences are indicated by send annotations, as explained
above. For this section we consider send annotations, as they might occur in the loop body of
our example (listing 4). Those annotations would have the form

//@ send φ(i) to L, d(i) ;

If the destination label L is either the label of the send instruction or of a later statement then
the loop has a forward dependence. Otherwise the loop has a backward dependence. If a loop
specification can be proven correct then in any case sequential execution of the loop is correct.
If in addition all dependences are forward dependences then vectorised execution will be correct
too.

Verification of the send instruction is performed by replacing the send annotation with a
procedure call send phi(i); and by inserting a procedure call recv phi(i); at the location of the
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/∗@
requires d(i)> i;
requires is iteration(d(i)) ==> φ(i);

@∗/
void send phi(int i);

/∗@
ensures is iteration(d−1(i)) ==> φ(d−1(i));

@∗/
void recv phi(int i);

Listing 6: Contracts for the encoding of dependences.

label L. The contracts of these methods encode the transfer of the resources specified by φ(i)
from the sending iteration to the receiving iteration, subject to two conditions:

1. Permissions can only be transferred to future iterations (d(i)> i).

2. Transfer only happens if both the sending and the receiving iterations exist.

Listing 6 shows contract for the methods send phi and recv phi. These contracts assume that
the inverse of the function d is expressible as a formula. The existence of iteration i is expressed
with the boolean function is iteration(i), whose definition is derived from the loop bounds. For
example,

for(int i=0;i<N;i++)

gives rise to

boolean is iteration(int i){return 0 <= i < N;}
Note that in the setting of polyhedral compilers, the functions d can be restricted to linear
functions, which are easily inverted.

Also note that the requirement d(i) > i only is necessary to ensure that the sequential
execution of the loop yields the correct result. With and without this restriction, all parallel
executions that are scheduled in such a way that the schedule obeys all ordering requirements
imposed by the send statement are correct. Hence the techniques described in this chapter are
not only applicable to the PENCIL language, but also to different parallel paradigms, such as
GPU kernels with barriers.

We have shown how to verify parallel loops, even in the presence of dependences from one
loop iteration to the next. We conjecture that if verification of a loop is possible without using
send then it is correct to tag the loop as independent, where correct means that the semantics of
the loop will never be error. Moreover, if send is used with labels occurring after the statement
then it is correct to use the ivdep tag. In the next section, we explain how to deal with another
kind of dependences: reductions.

4.4 Reductions

A reduction is an operation that aggregates data from a large data structure into a small data
structure. One of the simplest examples is computing the sum of all of the elements of an array.
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int sum;
float A[N];
...

for(int i=0;i<N;i++)
/∗@

requires perm(A[i],1/2);
reduces sum, +, A[i];
ensures perm(A[i],1/2) ∗∗ A[i]==\old(A[i]);

@∗/
{

sum += A[i];
}

Listing 7: Specified parallel summation.

Listing 7 shows an implementation of summing the elements of an array, complete with loop
specifications. Its iteration contract uses a new keyword: reduces, which takes three arguments.
The first argument is the name of the output variable. The second argument is the operation
that is used for the reduction. The third argument is an expression that signals the contribution
of this iteration to the output. This argument can be omitted if the resulting value is irrelevant.
Every pair of name and operation pair in a PENCIL reduction pragma would correspond to a
separate reduces clause in our iteration contracts.

To verify that the summation can be run as a reduction, we will verify by means of a
syntactic check that the way in which the reduction variable is used is safe with respect to the
operation. In our example the only use of sum is as the left-hand side of a += operator, which is
permissible. Initially, this will be the only use of the reduction variable that we allow, but other
patterns may be added as needed. The other proof obligations for a reducing parallel loop are
checked by encoding them as method contracts (see Listing 8).

In addition to the clauses already described in the previous sections, the host code contract
requires write permission for the reduction variable, and it ensures write permission on the
reduction variable and the fact that it has been increased by the sum of all of the elements of the
array.

The contract of the iteration method requires write permission on sum, which is also required
to be 0 and ensures write permission on sum, plus the fact that afterwards it is equal to the
contribution of the iteration. Note that if we omit the syntactic check, verification of the two
generated contracts is not sufficient to show that the original parallel reducing loop satisfies its
specification. For example, if we replace sum+=A[i] by

float tmp=sum; tmp = tmp + A[i]; sum=tmp;

then the generated methods would all verify, but parallelised execution could yield many
different results because the atomic execution of the increment of sum that is guaranteed for
sum=...+ by the reduces tag, is not guaranteed.
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/∗@
requires perm(sum,1);
requires (\forall∗ int i; 0 <= i < N ; perm(A[i],1/2));
ensures (\forall∗ int i; 0 <= i < N ; perm(A[i],1/2) ∗∗ A[i]==\old(A[i]));
ensures perm(sum,1) ∗∗ sum==\old(sum)+(\sum int i; 0 <= i < N ; A[i]);

@∗/
loop main(float A[N],float sum,int N);

/∗@
requires 0 <= i < N ;
requires perm(sum,1) ∗∗ sum==0;
requires perm(A[i],1/2);
ensures perm(A[i],1/2) ∗∗ A[i]==\old(A[i]);
ensures sum==A[i];

@∗/
loop iteration(int i,float A[N],float sum,int N){

sum += A[i];
}

Listing 8: Encoded Proof Obligations for summation.

4.5 Future Work

In this chapter, we have explained how PENCIL programs may be specified and how those
specification can be checked. Going forward in the project, we will both develop the theoretical
foundations for the specifications as well as implementing the verification as part of the VerCors
tool set. Besides implementing a verifier for the specification language, we will also investigate
how to automatically generate most and preferably all of the specifications, rather than requiring
them to be provided with the code.

The theoretical foundation will be based on the semantics for PENCIL, described in chapter
3. It will also be based on a formal definition for our specification language. The semantics of
that language will be based on a suitable variant of separation logic. The goal will be to prove
the conjecture that for every program, whose specification has been proven correct and for every
input that is valid according to that specification, the semantics of running the program on that
input cannot result in an error. Or in other words, running a verified program on a legal input
will not encounter any error condition.

Another goal for the verification tool is to minimise the amount of specifications that have
to be handwritten. The ideal result would be that given a PENCIL program that is annotated
with just pragmas, the tool will be able to fully automatically derive enough other specifications
to prove that the PENCIL pragmas are justified. Complete functional specifications are much
harder to derive, but we will investigate if it is possible to infer the iteration contracts from the
procedure contracts of the method in which they occur.

Finally, in this chapter we have explained our approach assuming that loops are not nested.
Of course in many cases loops are nested, but this need not be a problem. The PENCIL language
allows only a limited form of nested loops. It allows the innermost loop to have dependences,
wrapped around those can be several parallel loops and wrapped around those can be several
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non-parallel loops. Our approach for loops with dependences as explained, works for the
innermost loop. This innermost loop can then be considered as yet another statement. Next,
we have several independent loops, which are no different from a single independent loop.
Thus, the techniques sketched in the chapter can reduce the problem of specifying and verifying
nested parallel loops to the problem of specifying and verifying a C program. The remaining
non-parallel outer loops are no different from normal programs, and the techniques for dealing
with them are known.
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5 OpenMP
As PENCIL has not seen any use yet outside the CARP consortium, a pertinent question is
whether the ideas from the previous chapters also apply to languages related to PENCIL. In
particular, we made a preliminary investigation to see whether our ideas also apply to OpenMP.

OpenMP was selected due to its similarities with PENCIL: like PENCIL, OpenMP extends
C with an number of pragmas that enable running code on parallel hardware. Moreover, among
other languages taking this approach (such as OpenACC and OpenHMPP), OpenMP seems to
be the language that has gotten most traction.

5.1 OpenMP and its Relationship to PENCIL

The central pragma in OpenMP is the one for the parallel for-loop. Consider, for example, the
following piece of OpenMP code:

#pragma omp parallel for shared(A, B, C)

for (int i = 0; i < n; ++i) {

C[i] = A[i] + B[i];

}

Ignoring the pragma, it is clear that this code adds two vectors, A and B, of length n and stores
the result in C. Declaring the loop as being an OpenMP parallel for-loop tells the OpenMP
compiler that the iterations of this loop may be executed in parallel. This means that a number
of tasks will be created—one for each loop iteration—and that these tasks will be executed by a
number of threads in parallel until no task remains. Declaring the vectors as shared means that
only one copy of each of the vectors exists (no separate copy is created within the context of
each thread).

In the above example, executing the loop iterations in parallel yields the same result as in the
sequential case: the vector elements accessed in each loop iteration are different. Unfortunately,
one can write loops for which this it is not the case. Consider, for example, the following loop:

#pragma omp parallel for shared(A, B, C)

for (int i = 0; i < n; ++i) {

C = A[i] + B[i];

}

Executing this loop sequentially would yield C = A[n - 1] + B[n - 1] upon loop termina-
tion. However, parallelising the loop by creating a separate task for each loop iteration does not
guarantee the resulting value of C to be the same as in the sequential case: the loop iterations
may be executed in an arbitrary order and the (n− 1)th iteration is not necessarily the last
iteration to be completed.

The difference between the above two loops may be explained by their loop-carried de-
pendences: the first loop does not have any such dependences, whilst the second loop has a
loop-carried dependence on C. In fact, to establish whether the loop iterations of a loop can
correctly be executed in parallel, it suffices to check that the loop is free of any loop-carried
dependences. In this respect, there is a similarity between the problem of establishing whether
we can (a) annotate a for-loop with the OpenMP parallel-for pragma and (b) annotate a loop with
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PENCIL’s independent pragma: in both cases we need to show that there are no loop-carried
dependences.

As an aside, observe that the OpenMP parallel for-loop is also susceptible to the OpenCL
verification methods from CARP Deliverable D6.2: once we have parallelised a loop, the
problem of checking whether we were ‘legally’ allowed to perform the parallelisation boils
down to checking that the parallelised version is free of data-races. Obviously, this is not the
case in the second example from above: the threads will race on C.

5.2 Related Work

The existing body of literature on the verification of OpenMP programs is rather small. However,
both runtime verification and static verification approaches can be found in the literature.

In the case of runtime verification, the parallelised OpenMP program is executed several
times with one or more test vectors. During the runs certain data are collected which allow
one to determine off-line whether any data-races occurred during the runs. A disadvantage of
runtime verification is that data-races may not be exhibited on certain hardware or for certain
test vectors. Hence, data-race freedom of programs is not guaranteed and these techniques can
mostly considered to be bug finding techniques.

In the case of static verification, one tries to prove that the OpenMP program is free from
data-races or loop-carried dependences. A disadvantage of the techniques in this category is
that they are prone to false-positives: a data-race might be reported where none exists due to
certain abstractions being used in the methods.

Runtime Verification Each of the runtime verification methods specifically targeted towards
OpenMP uses variation of Lamport vector clocks [14], which means that data-races are detected
by means of a happens-before analysis. A series of papers by Jun et al. investigates the
scalability [11, 19] and quality of the errors [10] reported by this approach. The Intel Thread
Checker is a tool based on this approach [21, 23], an evaluation of the tool occurs in [12]. A
comparison between the Intel Thread Checker and the Sun Thread Analyzer occurs in [24].
Both tools are compared with the work of Jun et al. in [7].

In recent work, Jun et al. [8, 17, 13] combine happens-before analysis with lockset analysis
to achieve more scalable data race detection (without the false positives that usually occur in
lockset analysis).

Static Verification Lin [16] presents a static non-concurrency analysis. This analysis deter-
mines which code fragments can never be executed in parallel (i.e. are non-concurrent). The
result of the analysis is used to find potential data races in fragments that are supposed to be
executed in parallel. The static analysis component of the Sun OpenMP compiler makes use of
this analysis. The reported method for race detection potentially yields many false positives.
Static non-concurrency analysis is also used by Yu et al. [26] to detect data races. Their data
race analysis employs extended finite-state machines and is reported to be more accurate.

Basupalli et al. [3] verify that so-called Affine Control Loops (ACLs) with OpenMP direc-
tives satisfy the requirements of the given directives. A Polyhedral Reduced Dependency Graph
of the loop(-nest) is built and it is checked that the graph does not have any dependences that
are in violation of the given OpenMP directives.
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5.3 Technical Challenges

Recall from Section 5.1 that there are at least two approaches to establishing statically whether
we can rightfully annotate a loop with a parallel-for pragma: we can try to establish either (a)
that the loop does not have any loop carried dependences or (b) that the compiled code is free of
data races. We describe some technical challenges associated with both approaches.

In the case of (a), note that the verification requires information about the original source
code: we need to know which loops are annotated. From a technical perspective this means that
we need to have access to a parser that is able to parse OpenMP pragmas. In fact we would need
to have access to two such parsers, as OpenMP both extends C and FORTRAN. Currently, the
only freely available, industrial strength parsers that are able to parse OpenMP are the C and
FORTRAN parsers from the GNU Compiler Collection (GCC). This fits badly with our current
tool-chains, which are mostly Clang/LLVM-based1.

In the case of (b), the situation is slightly better with respect to parser availability: Although,
we would still need to depend on the GCC parsers, the DragonEgg plugin for GCC2 can be
exploited to compile OpenMP code to LLVM bitcode. Hence, this approach provides a better
fit with our current tool-chains. Also with this approach, it is easy to detect which loops
were annotated with parallel-for pragmas: these loops will be outlined as separate procedures.
Unfortunately, the outlined procedures will not only contain the loop-body, but will contain the
actual loop: The procedure represents the code that will be executed by a single thread and, as
there may be many more loop-iterations than threads, a loop is still required in the outlined
procedure. Separating the loop-body from the rest of the loop is harder at bitcode level than at
source level due to the unstructured nature of the bit code.

5.4 Conclusion

As the notion of a loop-carried dependence is important in both PENCIL and OpenMP, we
expect that the verification techniques developed for PENCIL will also be applicable to OpenMP
(and vice versa). Adaptation of the techniques should be straightforward, however, as explained,
there are some technological challenges associated with this.

1OpenMP support for Clang/LLVM is currently under development: http://clang-omp.github.io/.
2http://dragonegg.llvm.org/
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6 Future Work and Open Problems
In the remaining period of the project, we plan to work on the following:

• Formally establish soundness of the static verification technique w.r.t. the operational
semantics. Additionally, we will prove that if static verification succeeds, the formal
semantics will never contain the error value.

• Develop tool support for PENCIL verification. We will encode verification of the loop
iteration specifications that capture the loop annotations as part of the VerCors tool set [1].
Additionally, we will ensure that the sequential verification techniques of functional prop-
erties provided by the VerCors tool set are fully compatible with the PENCIL semantics,
and if necessary, adaptations are made.

• Develop support to compile PENCIL specifications to OpenCL specifications. In partic-
ular, if a PENCIL program can be verified, then the OpenCL program produced by the
(baseline) PENCIL compiler should be verifiable with the compiled specifications.

• We will investigate in more detail how the specification techniques for parallelisable loops
can be applied to OpenMP programs as well.
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