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1 Executive Summary
In recent years, massively parallel accelerator processors, primarily General Purpose Graphics
Processing Units (GPGPUs) from companies such as AMD and NVIDIA, have become widely
available to end-users. Accelerators offer tremendous compute power at a low cost, and tasks
such as media processing, medical imaging and eye-tracking can be accelerated to beat CPU
performance by orders of magnitude.

Parallel programming present a serious challenge for software developers. A system may
contain one or more of the plethora of devices on the market, with many more products
anticipated in the immediate future. Applications must exhibit portable correctness, operating
correctly on any accelerator. Software bugs in media processing domains can have serious
financial implications, and GPUs are being used increasingly in domains such as medical image
processing [11] where safety is critical. Thus there is an urgent need for verification techniques
to aid construction of correct GPU software.

In this document, we describe a number of programming idioms specific to GPU program-
ming that can lead to undefined or non-portable behaviour. To that end, we have analysed the
OpenCL and CUDA specifications (since these are the dominant programming languages for
GPUs) and picked out potential software defects, giving examples where appropriate. Note that
defects concerned with floating-point arithmetic and alignment are not documented, since they
are more general issues not tied exclusively to GPU programming.

We begin with a review of concepts and terminology relevant to GPUs and GPGPU program-
ming (§2). Then we document general defects common to both OpenCL and CUDA programs
(§3), before analysing those specific to OpenCL (§4) and CUDA (§5). Finally, we present
examples of defects in OpenCL and CUDA kernels which we have encountered during our
analysis of the Rodinia and SHOC benchmark suites (see D2.2A), and in the CUDA and AMD
SDK samples (§6).
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2 Background to GPU programming
To understand the nature of defects in GPU programs, it is first necessary to provide an overview
of GPU programming, for which we adopt the nomenclature of the OpenCL programming
model. The only exception to this rule is when we outline defects concerning warps, which are
a CUDA-specific notion that have no equivalent in OpenCL.

Note that, when presenting example code, we adhere to the current OpenCL standard [3]
and, where applicable, CUDA syntax as outlined in the CUDA C programming guide [6].

2.1 Programming model

OpenCL provides a high-level abstraction for mapping computation across GPU hardware (also
called a device), centred around the notion of a kernel program being executed by many parallel
work items (threads), together with a specification of how these work items should be partitioned
into work groups (group of threads). The kernel is a template specifying the behaviour of an
arbitrary work item, parameterised by work item and work group id variables. Expressions over
these ids allow distinct work items to operate on separate data and follow differing execution
paths through the kernel. Work items in the same work group can synchronise during kernel
execution, while work items in distinct work groups execute completely independently.

Each work item has access to four different types of memory:

• Private memory: only visible to a single work item.

• Local memory: visible to all work items in a single work group.

• Global memory: visible to all work items across all work groups.

• Constant memory: visible to all work items across all work groups.

Kernels are attached to command queues, which allows dependencies between kernels to
be enforced.

2.2 Execution model

A GPU typically consists of a large number of simple functional units. Subsets of functional
units are grouped together into cores (or streaming multiprocessors in CUDA parlance), which
can work independently.

The runtime environment associated with a GPU programming model must interface with
the GPU driver to schedule execution of work items across functional units. Each work group
is typically assigned to a single core. Thus, distinct work groups can execute in parallel on
different cores.

A core executes a work-group by scheduling fixed-sized sub-groups of work-items in a
round-robin fashion. On some architectures, the sub-group size is one, meaning that a core
switches between individual work-items on each cycle (e.g. ARM Mali-T600). On other
architectures, the sub-group size is a multiple of two (e.g. 32 on NVIDIA GPUs) and a core
switches between sub-groups executing in lock-step.
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Program fragment Predicated form
if(lid > N)
x = 0;

else
x = 1;

p = (lid > N);
p => x = 0;

!p => x = 1;

while(i < x) {
i++;

}

p = (i < x);
while(exists t :: t.p) {
p => i++;
p => p = (i < x);

}

Figure 2.1: Predicated forms for conditionals and loops.

Predicated execution

Functional units in a GPU core execute in lock-step, in SIMD fashion. Work items within a
sub-group occupy a core’s functional units, and thus must also execute in lock-step. Conditional
statements and loops through which distinct work items in the same sub-group should take
different paths must therefore be simulated, and this is achieved using predicated execution.

Consider the conditional statement in the top-left of Figure 2.1, where lid denotes the
local id of a work item within its group and x is a local variable stored in private memory.
This conditional can be transformed into the straight-line code shown in the top-right of the
figure, which can be executed by a sub-group in lock-step. The meaning of a statement
predicate=>command is that a work item should execute command if predicate holds for that
work item, otherwise the work item should execute a no-op. All work items evaluate the
condition lid > N into a local boolean variable p, then execute both the then and else branches
of the conditional, predicated by p and !p respectively.

Loops are turned into predicated form by dictating that all work items in a sub-group
continue to execute the loop body until the loop condition is false for all work items in the
sub-group, with work items for whom the condition does not hold becoming disabled. This is
illustrated for the loop in the bottom-left of Figure 2.1 (where i and x are local variables) by the
code fragment shown in the bottom-right of the figure. First, the condition i < x is evaluated
into local variable p. Then the sub-group loops while p remains true for some work item in the
sub-group, indicated by exists t :: t.p. The loop body is predicated by p, and thus has an
effect only for enabled work items.

Barrier synchronisation

When a work item t1 writes to an address in local or global memory, the result of this write is
not guaranteed to become visible to another work item t2 unless t1 and t2 synchronise. As noted
above, there is no mechanism for work items in distinct work groups to synchronise during
kernel execution.1 Work items in the same group can synchronise via barriers. Intuitively, a
work item belonging to work group g waits at a barrier statement until every work item in g has
reached the barrier. Passing the barrier guarantees that all writes to local and global memory by
work items in g occurring before execution of the barrier have been committed.

1Atomic operations on global memory are available in some GPU architectures, but cannot reliably implement
inter-group synchronisation due to lack of progress guarantees between groups.
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3 General GPU kernel defects
3.1 Data races

A data race is a classic flaw in concurrent software which arises when two work items access
the same memory location, at least one of those work items is performing a write operation, and
no synchronisation mechanism or atomic operation is used to access into that location. There
are various flavours of this problem in GPGPU programming, as described in the following.

Intra-kernel races

Local memory is a resource that is visible to all work items within a work group. However, there
is no pre-defined execution order on work items and, as a result, races occur when there are at
least two work items that access the same location. Figure 3.1 illustrates the problem. Here, all
even-numbered (respectively odd-numbered) work items write their work item identifier to local
memory location A (respectively B). Thus the final values written to these locations depend on
the order of execution of work items.

Local Memory

0 2 4 31 5

A B

Work Items

Figure 3.1: Example of intra-kernel data race to local memory.

An example OpenCL kernel exhibiting this sort of this data race appears below:

__kernel void racy (__local int* A, __local int* B) {
const size_t tid = get_local_id(0);
if (tid % 2 == 0)

A[0] = tid;
else

B[0] = tid;
}

The same reasoning applies to global memory, except that the issue is no longer restricted to
work items. That is, because work groups also execute asynchronously on a device, different
work groups can race on global memory, as the following kernel exemplifies:

__kernel void racy (__global int* A, __global int* B) {
const size_t tid = get_global_id(0);
if (tid % 2 == 0)

A[0] = tid;
else

B[0] = tid;
}
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Inter-kernel races

Racing on global memory is also possible across kernel boundaries. There are two general
flavours of this problem.

First, as depicted in Figure 3.2, the order in which kernels are queued and executed are not
necessarily the same. In the example given, there are no data races when kernels 1 and 2 execute
in the order queued. However, specifying out-of-order execution on the command queue, as
permitted by OpenCL, allows the run time to order the kernels in an arbitrary fashion; clearly,
the results depend on that ordering if there are shared objects between kernels 1 and 2.

kernel

2
GPU RAM

Command queue

In−order

execution execution

Out−of−order

kernel

1

kernel kernel kernel

kernelkernel

1 1 1

2 2

Figure 3.2: Example of inter-kernel data race when the command queue is executed out of order.

However, executing command queues in order does not guarantee an absence of data races,
as illustrated in Figure 3.3. Here two in-order command queues are dispatched to a device with
two execution resources, namely a GPU and a CPU, but which share memory. Suppose that
kernels 3 and 4 are attached to the CPU and kernel 5 is attached to the GPU. Because command
queues execute asynchronously to each other and, in this example, kernel 5 can proceed in
parallel with kernels 3 and 4, these kernels race on the shared memory.

kernel

4

kernel

3
GPU

Command queue 1

kernel

5

Command queue 2

CPU

RAM

kernel

kernel kernel

3

5

4

Execution

Figure 3.3: Example of inter-kernel data race when multiple command queues are dispatched to
a shared-memory device.

Host thread and kernel race

Setting up and launching a kernel occurs on the host side through a series of calls to the OpenCL
or CUDA API. However, host execution does not stall until the kernel completes unless there
are explicit synchronisation points on the host side. Therefore, if the host attempts to copy data
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back from a kernel, not ensuring that the kernel has terminated leads to undefined results. This
defect appears pictorially in Figure 3.4.

Kernel executionHost execution

Launch kernel

Copy back

Figure 3.4: Example of host copying data back before kernel finishes.

3.2 Barrier divergence

Although work items in the same work group execute asynchronously, it is possible to synchro-
nise their activities using barriers. Intuitively, a work item belonging to a work group waits at a
barrier until every work item in that work group has reached the barrier. However, if work items
can reach different barriers then behaviour is not defined and work items can deadlock.

10 2 3

Barrier Barrier

1 2 30

Prime?

Work Items

Figure 3.5: Example of barrier divergence.

Figure 3.5 gives an example of the problem. Suppose that work items 0 through 3 execute
the same code but then split on whether their work item identifier is prime or not. Furthermore,
after the split, there is an immediate barrier. In this case, work items {0,1} and {2,3} will each
wait indefinitely at different barriers and execution cannot continue.

While there is clarity across all programming models for what barrier divergence means in
loop-free code, the situation is far from clear for code with loops. Consider the example kernel
shown on the left of Figure 3.6, taken from [?].

This kernel is intended to be executed by a work group of four work items, and declares
an array A of two shared buffers, each of size four. Local variable buf is an index into A,
representing the current buffer.

The work items execute a nest of loops. On each inner loop iteration a work item reads the
value of the current buffer at index lid+1 modulo 4 and writes the result into the non-current
buffer at index lid. A barrier is used to avoid data races on A. Notice that local variables x

and y are set to 4 and 1 respectively for work item 0, and to 1 and 4 respectively for all other
work items. As a result, we expect work item 0 to perform four outer loop iterations, each
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shared int A[2][4];

void kernel() {
int buf, x, y, i, j;
x = (lid == 0 ? 4 : 1);
y = (lid == 0 ? 1 : 4);
buf = i = 0;
while(i < x) {

j = 0;
while(j < y) {
barrier();
A[1-buf][lid] =
A[buf][(lid+1)%4];

buf = 1 - buf;
j++;

}
i++;

}
}

p = (i < x);
while(exists t :: t.p) {
p => j = 0;
q = p && (j < y);
while(exists t :: t.q) {

q => barrier();
q => A[1-buf][lid] =

A[buf][(lid+1)%4];
q => buf = 1 - buf;
q => j++;
q => q = p && (j < y);

}
p => i++;
p => p = (i < x);

}

Figure 3.6: Illustration of the subtleties of barriers in nested loops.

involving one inner loop iteration, while other work items will perform a single outer loop
iteration, consisting of four inner loop iterations.

According to the guidance in the CUDA documentation such a kernel appears to be valid:
all work items will hit the barrier statement four times. Taking a snapshot of the array A at each
barrier and at the end of the kernel, we might expect to see the following:
A = {{0,1,2,3},{−,−,−,−}}→ {{0,1,2,3},{1,2,3,0}}
→ {{2,3,0,1},{1,2,3,0}}→ {{2,3,0,1},{3,0,1,2}}
→ {{0,1,2,3},{3,0,1,2}}

However, consider the predicated version of the kernel shown in part on the right of
Figure 3.6. This is the form in which the kernel executes on an NVIDIA GPU. The four work
items comprise a single sub-group. All work items will enter the outer loop and execute the first
inner loop iteration. Then work item 0 will become disabled (q becomes false) for the inner loop.
Thus the barrier will be executed with some, but not all, work items in the sub-group enabled.
On NVIDIA hardware, a barrier is compiled to a bar.sync instruction in the PTX (Parallel
Thread Execution) assembly language. According to the PTX documentation [7], “if any thread
in a [sub-group] executes a bar instruction, it is as if all the threads in the [sub-group] have
executed the bar instruction”. Thus work items 1, 2 and 3 will not wait at the barrier until work
item 0 returns to the inner loop: they will simply continue to execute past the barrier, performing
three more inner loop iterations. This yields the following sequence of state-changes to A:
A = {{0,1,2,3},{−,−,−,−}}→ {{0,1,2,3},{1,2,3,0}}
→ {{0,3,0,1},{1,2,3,0}}→ {{0,3,0,1},{1,0,1,0}}
→ {{0,1,0,1},{1,0,1,0}}

After the inner loop exits, work item 0 becomes enabled, but all other work items become
disabled, for a further three outer loop iterations, during each of which work item 0 executes a
single inner loop iteration. The state of A thus remains {{0,1,0,1},{1,0,1,0}}.

The OpenCL standard [3] gives a better, though still informal definition, stating: “If a barrier
is inside a loop, all [threads] must execute the barrier for each iteration of the loop before any
are allowed to continue execution beyond the barrier”, which at least can be interpreted as
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Architecture Final state of A
NVIDIA Tesla C2050 {{0,1,0,1},{1,0,1,0}}
AMD Tahiti {{0,1,2,3},{1,2,3,0}}
ARM Mali-T600 {{0,1,2,3},{3,0,1,2}}
Intel Xeon X5650 {{∗,∗,∗,1},{3,0,1,2}}

Figure 3.7: The litmus test of Figure 3.6 yields a range of results across varying platforms

rejecting the example of Figure 3.6.
To investigate this issue in practice, we implemented the litmus test of Figure 3.6 in both

CUDA and OpenCL and ran the test on GPU architectures from NVIDIA, AMD and ARM,
and on an Intel Xeon CPU (for which there is an OpenCL implementation). Our findings are
reported in Figure 3.7. Observe that the test result does not agree between any two vendors.
The NVIDIA results match our above prediction. The AMD result also appears to stem from
predicated execution. ARM’s Mali architecture does not work using predicated execution [4],
so perhaps unsurprisingly gives the “intuitive” result we might expect. For Intel Xeon, we found
that different work items reported different values for certain array elements in the final shared
state, indicated by asterisks in Figure 3.7, which we attribute to cache effects.

The example of Figure 3.6 is contrived in order to be small enough to explain concisely and
examine exhaustively. It does, however, illustrate that barrier divergence is a subtle issue, and
that non-obvious misuse of barriers can compromise correctness and lead to implementation-
dependent results.
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4 OpenCL-specific defects
4.1 Memory defects

To understand the nature of these defects, we first need to review some OpenCL terminology. In
particular, OpenCL differentiates between two categories of data types:

1. A buffer object can store a collection of a scalar data type (e.g. an integer) or a user-
defined structure. Elements in a buffer are stored in a sequential fashion and can be
accessed via a kernel pointer executing on the GPU. Typically a buffer object in GPU
memory is initialised by copying from a region of host memory. This copy can be avoided,
however, through a host pointer. In these cases, the GPU may cache that memory.

2. An image object is used to represent two- or three-dimensional data such as a frame
buffer or image. How elements of an image object are stored is opaque and they cannot
be directly accessed using a pointer. Care has to be taken with these data types to avoid
undefined behaviour.

The following describes issues with buffer and image objects.

Aliasing host memory

It is possible to initialise two or more buffer objects using the same host pointer, basically
creating aliases to an area of host memory. Consider the following snippet of OpenCL code:

cl_mem input1 =
clCreateBuffer(..., CL_MEM_USE_HOST_PTR,..., data,...);

cl_mem input2 =
clCreateBuffer(..., CL_MEM_USE_HOST_PTR,..., data,...);

Here data, which is a pointer to data residing in host memory, is now effectively aliased
by buffer objects input1 and input2. This becomes problematic if the buffer objects are then
written to by different kernels that execute asynchronously (e.g. they are in different command
queues or the command queue can execute out of order). In effect, this creates a data race on the
underlying area of host memory.

Violating memory access declarations

When creating a buffer or image object, it is possible to override its default read-write attribute by
specifying it is read-only (CL_MEM_READ_ONLY) or write-only (CL_MEM_WRITE_ONLY). However,
any subsequent read (respectively write) to a write-only (respectively read-only) object is
undefined.

Concurrent access to sub-buffers

In OpenCL it is possible to divide a buffer object or image into a number of chunks called
sub-buffers. This allows multiple kernels to operate on sub-buffers at the same time.

However, reading, writing, or copying between a buffer object and its sub-buffer(s) in a
concurrent fashion is undefined. In a similar vein, performing any of those operations between
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overlapping sub-buffers is undefined. The only valid concurrent activity allowed on a buffer and
its sub-buffers, or on overlapping sub-buffers, is a sequence of reads.

Mapping buffer objects

Buffer objects residing on a device can be mapped into the host address space through
clEnqueueMapBuffer, which returns a pointer to the mapped region. Any memory access
outside of the range of the mapped region, however, is undefined.

Manipulating images on the host

Images residing in device memory can be read into host memory using clEnqueueReadImage,
or conversely written to from host memory using clEnqueueWriteImage.

Correct use of these functions has several stipulations. First of all, any pending operations
on the image object must complete before the read or write initiates. Secondly, the image object
cannot be mapped into host memory. Finally, any subsequent operation on the image object
through the device cannot commence until the read or write has finished.

Incomplete transfer

A buffer object can be read into host memory or written by the host with clEnqueueReadBuffer

or clEnqueueWriteBuffer, respectively. When these operations are non-blocking, the host
code must wait for an event signalling completion. Consider the following snippet of code:

input = clCreateBuffer(context, CL_MEM_COPY_HOST_PTR,
sizeof(float) * count, data, NULL);

cl_event eventObject;
err = clEnqueueWriteBuffer(commands, input, CL_FALSE,

0, sizeof(float) * count,
data, 0, NULL, &eventObject);

// Wait for the event.
// Removing this line of code is erroneous.
clWaitForEvents(1,&eventObject);
data[0] = -100;

Here a memory copy is initiated on input through clEnqueueWriteBuffer. It is non-
blocking as the third parameter is CL_FALSE, but there is an event attached to the operation
through the last parameter eventObject. The call to clWaitForEvents forces the host to
suspend until that operation is complete. Removing that call, on the other hand, would mean
that the assignment to data on the subsequent line occurs asynchronously.

4.2 Miscellaneous defects

Callback on OpenCL build function

If a callback function is defined then the OpenCL program can be built asynchronously. In this
case, the callback function will be called when the program executable has been built. It is the
responsibility of the application to ensure that this function is thread safe otherwise unexpected
behaviour arises.
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Work item divergence

Specific OpenCL functions must be performed by all work items in a work group and, further-
more, with the same argument values, otherwise the results are undefined. Examples of functions
under this restriction are: async_work_group_copy, async_work_group_strided_copy and
wait_group_events.

Race setting kernel argument

Setting up the parameters of an OpenCL kernel is achieved through the clSetKernelArg

function call. However, when multiple host threads are executing and attempting to set the
arguments of the kernel to different values, the behaviour of the kernel is undefined. The
following example demonstrates this defect using OpenMP threads:

int tid, nthreads, err;
int* container;

#pragma omp parallel private(nthreads, tid)
{
tid = omp_get_thread_num();
err = clSetKernelArg(theKernel,

0,
sizeof(cl_mem),
container[tid%2]);

}

Here a parallel region of host code is declared through an OpenMP pragma with nthreads

threads. The host thread gets its thread identifier from the OpenMP run-time system using
omp_get_thread_num. Then, if this is value is even, it tries to set the first kernel argument to
container[0], otherwise it tries to set it to container[1]. The value of the kernel argument is
therefore dependent on the thread identifier, which is erroneous.

Incorrect initialisation of work items or work groups

It is possible that the number of work items and/or work-groups defined in the host code is
not initialised correctly. As a result some values may not be computed or we may have index
out-of-bound errors and the kernel crashes. The following example demonstrates this defect:

__kernel void square(__global float* input,
__global float* output)

{
const size_t tid = get_global_id(0);
output[tid]= input[tid] * input[tid];

}

If the number of work items exceeds the size of the arrays input and output, then there is
an index out-of-bound error. On the other hand, if the number of work items is less than these
array dimensions, some values will not be computed.

Launching kernel with variable in local memory

Kernels can be launched from within other kernels. However, when the callee kernel expects
a formal parameter in local memory space, and the actual argument is declared in the caller

CARP-ICL-DD-005-v1.4 14 10 November 2012



CARP

kernel, the behaviour is implementation defined. Consider the following example:

__kernel void kernelOne(__local float* input);

__kernel void kernelTwo(__global float* input,
__global float* output)

{
__local float temp [1024];
kernelOne(temp);

}

The problem is that temp is declared locally in kernelTwo within device local memory and
then passed to kernelOne.

Host and device endianness

The endianness of a device and the host are key concerns in the portability of OpenCL programs
since OpenCL strives to support heterogeneous platforms whose endianness differ.

Variables residing in global or constant memory on the device might have a different
endianness to the host. To allow the OpenCL compiler to do endian conversion on load or
store operations from or to these variables, the developer can mark them with an attribute
indicating the storage choice: __attribute__ ((endian(host)) specifies the variable uses
the endianness of the host, whereas __attribute__ ((endian(device)) indicates the variable
uses the endianness of the device on which the program will be executed. The default endianness
is the device type.

However, when an OpenCL program relies on the endianness of a particular device, it
clearly becomes incompatible with devices whose endianness differ. As stated in the OpenCL
specification:

. . . developers need to make sure that their kernels are tested on both big-endian
and little-endian devices to ensure source compatibility with OpenCL devices now
and in the future.

Endianness can also unintentionally become part of the kernel implementation when casting
between types. The following code snippet, taken directly from the OpenCL specification,
demonstrates the problem:

// An array of floats
float x[4] = {0.0f, 1.0f, 2.0f, 3.0f};
// Create a floating-point vector of width 4
float4 v = vload4(0, x);

// Cast the floating-point vector into an unsigned integer vector.
// Portable
uint4 y = (uint4) v;

// Cast the floating-point vector into an unsigned short vector.
// Not portable
ushort8 z = (ushort8) v;

The first type cast is portable because the the source vector v and the destination vector y
consist of four elements. This means that the byte ordering between elements in the vector and
the ordering between elements in the vector remain the same.
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However, the vector z contains eight elements and the byte ordering of its elements depends
on the endianness of the device. On a little-endian machine z is stored as:

0x4040, 0x0000, 0x4000, 0x0000, 0x3f80, 0x0000, 0x0000, 0x0000

whereas on a big-endian machine it is:

0x0000, 0x0000, 0x3f80, 0x0000, 0x4000, 0x0000, 0x4040, 0x0000
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5 CUDA-specific defects
5.1 Atomics

One way to avoid data races on a shared memory location is to use atomic functions, which
implement a read-write-modify operation without interference from other work items. CUDA
currently supports atomic functions on 32-bit or 64-bit locations residing in local or global
memory, e.g. atomicDec atomically decrements an integer value by one. However, it is the
responsibility of the programmer to ensure that any location updated by an atomic function is
not concurrently updated by a non-atomic statement.

To exemplify this defect, first consider a CUDA kernel with only atomic updates:

__global__ void atomics (int* n)
{
atomicAdd(n, 100);

}

Here, the formal parameter n resides in global memory and is incremented atomically by
100. Assuming n is initially 0, and that there are 32 work items, the final value of n is 3200.

The problem arises when the kernel is modified as follows:

__global__ void atomics (int* n)
{
// Non-atomic reset of n

*n = 0;
atomicAdd(n, 100);

}

Now there are no guarantees on when n will be reset to 0, thus there is a data race on n

between the two instructions.

5.2 Warp shuffling

As noted in Chapter 2, the CUDA execution model concentrates around a sub-group of 32 work
items, a so-called warp. The concept of a warp is supposed to be hidden from the programmer,
i.e. it is a run-time detail, although it is almost inescapable if a programmer wants to increase
performance. CUDA therefore provides several programming tricks and offers several intrinsics
to manipulate warps with the sole aim of increasing performance.

One such intrinsic is __shfl which facilitates the exchange of data between work items in a
warp without passing through the memory hierarchy, which is much more costly. But care must
be taken with these warp shuffling intrinsics, for two reasons.

First, when two work items in a warp wish to exchange a value, both must be active. In this
sense, active means that the work item executes the instructions: at a branch, it is possible for a
work item to become disabled because it does not satisfy a data-dependent decision, and it will
only become enabled again at a particular merge point. Thus, if one of the work items is in a
disabled state, the value retrieved during the warp shuffle is undefined.

Warp shuffling intrinsics also take an optional width parameter that divides the warp into
sub-warps. This allows data to be exchanged within sub-warps rather than across the entire
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warp. However, the width of each sub-warp must be a power of two, to enable equal division;
again, failure to comply with this property produces undefined behaviour.
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6 Examples of defects in open source
samples
In analysing kernels from the AMD Accelerated Parallel Processing SDK [1], the CUDA
SDK [5], and in the analysis of the Rodinia [2] and SHOC [10] benchmark suites we have
encountered a number of defects, which we now describe.

AMD SDK: LU decomposition

We found an example of an intra-group data race in an LU decomposition kernel shipped with
the AMD APP SDK [1]. Part of the code for this kernel is shown in Figure 6.1. Threads write
into global memory array inplaceMatrix at lines 9-12. The threads then synchronise at a
barrier at line 15. This barrier takes the CLK_LOCAL_MEM_FENCE flag, specifying that threads
synchronise with respect to local memory, but not necessarily with respect to global memory.
As a result this barrier does not guarantee that the writes to inplaceMatrix will not race with
subsequent reads from inplaceMatrix at lines 27-30.

The problem can be fixed by strengthening the barrier to also synchronise on global memory,
replacing the barrier statement with:
barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);

CUDA N-body simulation

We discovered a write-write data race in the N-body example that shipped with the CUDA SDK
v2.3 [5]. This example uses multiple CUDA kernels to numerically approximate a system of N
interacting bodies [9]. This is an ideal problem for parallelisation since interactions between
each pair of bodies can be calculated independently. The CUDA implementation of this example
decomposes the N2 pair-interactions into smaller k× k tiles, each of which is assigned to a
one-dimensional group of k threads. Within each group, every thread is assigned to a distinct
body (a row of the tile) and sequentially considers the interactions associated with this body to
compute an updated state for the body.

The kernel implements an optimisation for small values of N where threads are arranged
in two-dimensional groups, and multiple threads within a group are assigned to the same body.
Consequently, the interactions calculated by threads assigned to the same body must be summed.
A barrier ensures that each thread has completed its sub-calculation, and then a conditional is
used to ensure that a single “master” thread performs the summation. However, a data race
could occur because a similar condition was not in place to ensure that only this master thread
would perform a final update to the position and velocity of the body. As a result, it was possible
for the master thread’s final update, using the full summation, to be overwritten by partial results
computed by other threads.

We reported this data race to Lars Nyland at NVIDIA who confirmed that “It was a real
bug, and it caused real issues in the results. It took significant debugging time to find the
problem.” [8]. NVIDIA had subsequently fixed this bug in v3.0 of the CUDA SDK.
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1 __kernel void kernelLUDecompose(__global double4* LMatrix,
2 __global double4* inplaceMatrix,
3 int d,
4 __local double* ratio)
5 {
6 ...
7 if(get_local_id(0) == 0)
8 {
9 (D == 0) ? (ratio[lidy] = inplaceMatrix[ y * xdimension + d / VECTOR_SIZE].s0 / ...):1;

10 (D == 1) ? (ratio[lidy] = inplaceMatrix[ y * xdimension + d / VECTOR_SIZE].s1 / ...):1;
11 (D == 2) ? (ratio[lidy] = inplaceMatrix[ y * xdimension + d / VECTOR_SIZE].s2 / ...):1;
12 (D == 3) ? (ratio[lidy] = inplaceMatrix[ y * xdimension + d / VECTOR_SIZE].s3 / ...):1;
13 }
14

15 barrier(CLK_LOCAL_MEM_FENCE);
16

17 if(y >= d + 1 && ((x + 1) * VECTOR_SIZE) > d)
18 {
19 ...
20

21 if(x == d / VECTOR_SIZE)
22 {
23 ...
24 }
25 else
26 {
27 inplaceMatrix[y * xdimension + x].s0 = result.s0;
28 inplaceMatrix[y * xdimension + x].s1 = result.s1;
29 inplaceMatrix[y * xdimension + x].s2 = result.s2;
30 inplaceMatrix[y * xdimension + x].s3 = result.s3;
31 }
32 }
33 }

Figure 6.1: Intra-group data race on global memory in LU decomposition kernel. The writes
to inplaceMatrix at lines 9-12 are separated from the reads at lines 27-30 by a local memory
barrier, but this is not sufficient to guarantee data race freedom because inplaceMatrix is an
array in global memory.
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Defects in the Rodinia benchmark suite

Our analysis of the Rodinia benchmarks [2] (see D2.2A) revealed three defects:

• The HotSpot benchmark uses a buffer that is defined with the CL_MEM_USE_HOST_PTR

flag, indicating that this buffer should reside in host memory. However, the benchmark
code used OpenCL API calls to copy the contents of this buffer to/from device memory,
violating the intention specified by the flag and leading to undefined behaviour.

• The Pathfinder benchmark exhibited a potential data race due to a missing barrier. The
nature of this data race is similar to those of the data races in the AMD and CUDA SDKs,
discussed above.

• The BFS benchmark contained a functional defect where a 2D array index was incorrectly
calculated. This led to the kernel computing incorrect results when invoked with a
non-square array of work items.

We have reported these bugs to the Rodinia developers, who have confirmed them.

Defects in the SHOC benchmark suite

Our analysis of the SHOC benchmarks [10] (see D2.2A) revealed two defects:

• The Sort benchmark performs a radix sort using a radix value of 4. This means that a
32-bit integer is split into 8 4-bit digits. The kernel is invoked multiple times, with each
invocation sorting the array based on the values of a specific digit of the elements (starting
with the least significant one and moving one digit to the left at every iteration). For every
iteration, the input and output buffers are switched, except in the final iteration where
the buffers were not switched. This could lead to the computation of incorrect results.
Interestingly this defect did not manifest in the benchmark’s self-validation code because
the test inputs lie in the range 0..15, and so fit into one 4-bit digit. As a result sorting is
complete by the end of the first kernel invocation.

• In one version of the BFS benchmark, synchronisation across distinct work-groups is
attempted based on the assumption that if the number of work groups does not exceed the
number of compute units the work groups are guaranteed to execute in parallel. This is not
valid OpenCL code, as there is no mechanism for synchronisation between work-groups
in OpenCL [3].

The SHOC developers have confirmed the first bug and fixed it in their repository.
Regarding the second bug, the SHOC developers commented that this invalid OpenCL code

behaved correctly when executed on NVIDIA GPUs and offered a significant performance
improvement over alternative implementations that lie within the defined semantics of OpenCL.
This illustrates the fact that the portability aims of OpenCL come at a price: developers may be
forced to write code that works in general but performs sub-optimally on particular architectures,
or may instead opt to write code which, strictly, has undefined semantics, but which (for
implementation-defined reasons) behaves sensibly and efficiently on a particular architecture.

We encountered several inconsistencies in the SHOC benchmark with respect to the syn-
chronisation of OpenCL API calls. Within individual benchmarks we found that event lists
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were used for some but not all commands that were enqueued to a command queue. Because
the benchmarks use in-order command queues these inconsistencies have no semantic effects.
However, if the benchmark implementations switched in the future to use out-of-order command
queues these inconsistencies could lead to buggy behaviour.
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