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1 Executive Summary
Many-core accelerator processors, in particular general-purpose graphics processing units
(GPGPUs) are the current architecture of choice for achieving maximum performance within
problem domains exhibit a high degree of parallelism. Although great speed-ups can be
achieved, programming accelerator devices is currently a dark art, as the programming models
in use expose the programmer to many low-level, architecture-specific details. As a result, the
portability of programs written for accelerator devices is currently limited.

In the coming years, the CARP project aims to address the aforementioned accelerator
programming issues. To be able to do so, it is important to be familiar with the current state-
of-the-art in the field of accelerator programming. In particular, it is important to know the
current state-of-the-art in: (1) programming models in use for accelerator programming, (2)
compiler technologies for accelerator programming, (3) methods to gage the execution costs
of accelerator programs (e.g., costs in terms of energy consumption, as accelerators are often
embedded in mobile devices), and (4) methods to verify the correct working of accelerator
programs. In addition, as the methods and tools developed within the CARP project will need to
be validated, it is also important to know (5) the state-of-the-art in a number of application areas
for accelerator programming.

This deliverable describes the state-of-the-art in all of the above areas, where the state-of-the-
art with regards to applications is restricted to eye tracking and benchmarking (as appropriate
given the industrial partners of the project). Because the field of accelerator programming is
currently in its infancy, the state-of-the-art is limited. For this reason, the state-of-the-art in the
wider field of multi-threaded programming is reported in areas which are relevant to CARP, and
which we believe will soon influence accelerator programming.

Briefly, the state-of-the-art in accelerator programming is as follows:

1. Programming models for accelerator devices are close to the actual hardware, which
complicates the programming of these devices.

2. Initial efforts have been made to apply advanced compilation techniques, including
polyhedral compilation, to automate the generation of efficient accelerator code for loops.
Currently, only simple loops exhibiting regular access patterns can be dealt with.

3. Although general quantitative cost analysis methods are available, these have thus far not
been applied specifically to accelerated systems.

4. Preliminary static verification methods for GPU kernels have been designed. The main
limitations of these methods are: limited support for loops and procedures; rudimentary
handling of pointers; limited scalability to large numbers of threads.

5. Image processing has been successfully accelerated using GPUs, but only using low-level
programming models such as CUDA and OpenCL.

6. Several collections of OpenCL benchmarks are publicly available for evaluation.
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2 Introduction
We describe the state-of-the-art in accelerator programming, with a particular emphasis on
general purpose GPU (GPGPU) programming. Our survey is focused according to the aims of
the CARP project.

The survey is structured via a chapter targeting each technical work package of the project,
thus to a large extent the chapters can be read relatively independently of one another. However,
due to strong links between the project’s work packages, there are frequent cross-references
between chapters.

As already remarked in the Executive Summary, accelerator programming is a field that
is currently in its infancy, hence the state-of-the-art is limited in some areas. We discuss the
state-of-the-art in the wider field of multi-threaded programming in cases where we believe
this state-of-the-art is relevant to the CARP project, and likely to find application to accelerator
programming in the near future.

The structure of this deliverable is as follows:

• Parallel Programming Models (Chapter 3). We describe the current state-of-the-art in
models for multi-threaded programming. CARP involves the design of a novel intermedi-
ate language for accelerator programming, PENCIL. PENCIL will lie in the landscape
of existing programming models for parallel systems, thus up-to-date knowledge of this
landscape is pivotal in the design of PENCIL.
• Compiler Optimization and Code Generation (Chapter 4). The state-of-the-art in

compiler optimization and code generation for accelerator programming is discussed. In
particular, we discuss the current state in applying polyhedral compilation techniques:
these are among the most advanced compiler optimization techniques to date, and will be
applied and extended during the project.
• Quantitative Cost Analysis (Chapter 5). We discuss the state-of-the-art in quantitative

methods that can be used to gage the cost of system execution, in particular, cost in terms
of execution time, memory usage, and energy consumption.
• Static Verification (Chapter 6). We discuss the state-of-the-art in static verification of

accelerator programs using theorem proving and model checking. We also provide an
overview of verification techniques for pointer-manipulating programs, and techniques
for the analysis of traditional concurrent software, which we plan to apply to accelerator
software during the project.
• Applications and Validation Metrics (Chapter 7). The techniques developed during

CARP will be evaluated with respect to two primary application domains: eye-tracking
software, and accelerator benchmarks. We discuss the state-of-the-art in these areas with
respect to GPGPUs.
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3 Parallel Programming Models
3.1 Multiprocessor Architecture

Since 1945, programming models for single processor systems have evolved with the assump-
tion that the underlying hardware implements the Von Neumann architecture, a single thread
executing instructions in program order. Improved semiconductor manufacturing and advanced
microarchitectural techniques have increased performance by many orders of magnitude while
presenting an essentially unchanged model to the programmer. More recently, the rate of
increase has slowed, as both of these avenues of improvement have neared their limit. Therefore,
other ways of improving computing performance are sought.

An obvious way to improve performance is to use multiple discrete processors rather than
just a single one. Major performance benefits can be realized this way, but as the number of
parallel threads of execution (and thus performance) increases, the architectural model becomes
more and more dissimilar to the Von Neumann model. Therefore, new programming models are
needed to allow programmers to exploit the large number of threads becoming available.

This chapter explores the various programming models which have sprung up to fill this
gap. In order to understand the constraints these programming models are working with, a brief
discussion of multiprocessor architectures is also included.

3.1.1 Homogeneous and Heterogeneous Systems

Any system including more than one processing element can be broadly categorized as either
homogeneous or heterogeneous.

Homogeneous Systems In a homogeneous system, all processing elements are identical and
behave almost entirely as peers. (There may be a ”boot” element that has a special role at system
startup, but once the system is running it is no longer special).

This implies that the processing elements must be self-supervising; the OS runs on all
processors and there is no intrinsic master/slave relationship between processors. It is possible
for an OS to use the different processors in an asymmetric way (e.g. making all scheduling
decisions or handling all peripheral interrupts on a single processor), but the OS must have a
presence on each processor as there is no provision for external supervision.

As all the processors are identical there is no need (or indeed opportunity) for software to
adapt to different processor types; software just needs to be able to cope with running on several
processors concurrently.

Heterogeneous Systems A heterogeneous system contains more than one type of processor.
The different processor types might have different execution models, memory models or in-
struction sets. A heterogeneous system allows each processor type to be specialized to run a
particular task or class of tasks. Usually there is a master/slave relationship where one processor
or group of processors is responsible for supervising the activities of the others. This relieves
the other processors of the need to run supervisory code such as an OS.

Producing software for heterogeneous systems is a greater challenge; software must adapt at
some level to the different processor types and arrange for different processors to run tasks that
are suited to their specializations.

CARP-ICL-RP-004-v1.15 8 ??
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3.1.2 Threading Models

In describing processors that support multiple threads of execution, various terms are used to
specify how the individual threads can be controlled by the programmer.

Both MPMD and SPMD (described below) are cases of MIMD (Multiple Instruction
Multiple Data) execution, where each thread notionally executes its own instruction stream.

Single Instruction Multiple Data (SIMD) SIMD is not a multi-threading model at all, but a
way to extract more performance from a single thread. SIMD is an architectural feature that
allows a single processor to process a given data set using fewer total operations. A processor
supporting SIMD includes registers that can contain several discrete data values, and instructions
that can simultaneously perform the same operation on all data values packed into registers. The
number of values that can be stored and operated on in this way is termed the ”SIMD width” (in
modern processors, typically four or eight 32-bit values).

The maximum possible performance increases by a factor approaching the SIMD width
(typically 4 or 8), but this improvement can only be seen when the workload is able to use
the SIMD features effectively. For maximum performance every operation in the algorithm
must be converted to use the SIMD operations, otherwise the non-SIMD operations become
the bottleneck, which requires regularity in the algorithm. As the SIMD width increases, the
amount of regularity required increases too; this limits the usefulness of increasing the width.

In practice many algorithms do see a significant performance improvement when SIMD
features are used, but there is relatively little scope for further improvement as increasing SIMD
width has diminishing returns.

Multiple Program Multiple Data (MPMD) In an MPMD model, each thread is independent
of the others. Each thread executes its own program with its own data, so that a given thread can
be doing a different task and processing different data from any other thread.

MPMD systems support a fixed number of hardware threads. A larger number of software
threads can be supported by switching each hardware thread amongst several software threads
in the OS. This makes thread creation relatively expensive, as each thread must be individually
created by software. This places constraints on how these software created threads can be used
by programmers, as the useful work done by a thread has to justify the cost of creating it. It
also requires at least some component of the OS to run on all processors in order to handle
thread switching. (It must be an OS component as the virtual memory settings may need to be
reconfigured, which requires OS level privilege). This places limits on the maximum sensible
number of threads since the OS has to manage them all.

Traditional threading models, such as POSIX threads [27] (see Section 3.4.2) are geared
towards the MPMD paradigm.

Single Program Multiple Data (SPMD) In an SPMD model, a group of threads work together
on the same task (they run the same program). Each thread is identical apart from a set of values
(identifiers) that is unique to that thread. Each thread uses the identifiers to determine its input
and output data. This model works well, for example, for graphics problems, where for each
pixel in the output image a thread is created which performs the same processing on different
input pixes. The SPMD paradigm is at the heart of programming models for GPU-accelerated
systems, including OpenCL [17], CUDA [22] and C++ AMP [1]. These programming models
are discussed further in Section 3.4.1.

An SPMD program is usually called a kernel; the range of values on which it is executed is
known as the domain. Most models support 2D and 3D domains in addition to 1D domains, and
most parallel processors are designed to work efficiently with such domains.
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While SPMD allows a large number of threads to be created, the threads are not guaranteed to
be active at the same time, which can cause problems with shared memory and synchronization.
Therefore, the domain is often divided into smaller tiles, with the guarantee that all threads
within a tile are executing simultaneously. Where tiles are supported, the domain is usually
constrained to be a multiple of the tile size. In some cases, tiles are further sub-divided into
groups of threads executing in SIMD fashion (in NVIDIA’s CUDA programming model [22]
these SIMD groups are called warps).

Nothing about SPMD programs prevents an MPMD-capable machine from running them.
Moreover, an MPMD program can be in principle converted to on SPMD one (with a series of
if/then statements to allow each thread to pick out its own program); in practice, however, SPMD
processors have significant optimizations that rely on threads taking similar paths through the
program.

3.1.3 Symmetric Multiprocessing (SMP)

An SMP processor contains several identical cores. Each core is similar to the processor found
in a uniprocessor system. The SMP processor includes additional logic to allow the cores to
operate simultaneously. Due to the identical cores, an SMP processor on its own is an example
of a homogeneous multiprocessing system implementing the MPMD threading model. An SMP
processor can also be combined with other processors or accelerators to form a heterogeneous
multiprocessing system.

The cores of an SMP system have a single view of memory: changes to memory made on
one core are visible to the others. Each architecture supporting SMP defines a memory ordering
model – a set of rules defining precisely when changes to memory made by one processor are
made visible to the other processors.

The memory system of an SMP processor is similar to that found in uniprocessor systems
– a hierarchy of one or more levels of cache and main memory. Each level of cache may be
duplicated by all processors, shared by all processors, or fall somewhere between these extremes.
Where multiple instances of a cache exist at a given level, a cache coherency mechanism is
usually used to ensure that the memory ordering model is honoured. This is a tradeoff: the cache
coherency system imposes area, power and performance costs to provide a memory ordering
model that is easier for the programmer to use. More programmer-friendly memory ordering
models typically impose a higher cost in the cache coherency mechanism.

An architecture supporting SMP includes facilities to allow synchronization between pro-
cessors. These usually take the form of composite atomic instructions (e.g. swap, compare-and-
swap, add, subtract, etc.) or atomic primitives (e.g. load-locked, store-conditional) which can be
combined with data processing operations to produce the desired effect.

Typically, user programs running on an SMP machine have a virtualized view of memory,
controlled by OS software and implemented by the memory management unit (MMU) in
each processor. If desired, threads running on different processors can use the same MMU
configuration, and thus share an identical view of memory.

As each core supports a single thread, that thread has performance comparable to a similar
uniprocessor. This means that in general performance is relatively high, but memory accesses
within a given thread need to demonstrate good temporal and spatial locality to make the most
of the cache system and hence maximize performance. However, as each processor usually has
at least one level of cache not shared with other processors, these locality requirements do not
apply between threads.
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Multithreading (MT) In a multithreading system, a single core supports multiple hardware
threads. In other words, more than one hardware thread shares a set of execution resources.
Several such cores can be combined to form an SMP processor which also implements MT, or
one core on its own can comprise a uniprocessor system. Two popular multithreading models
are Simultaneous Multithreading (SMT) and Fine Grained Multithreading (FGMT).

In a simultaneous multithreading processor, each hardware thread supports the full architec-
tural model and thus has its own copy of the register bank. Each thread runs for as long as the
processor is active. The same OS mechanisms used on SMP systems are used to provide the
illusion of multiple threads, and to switch between them; the OS sees each hardware thread as
a separate processor (but will typically have some understanding of the relationship between
threads and physical processors). SMT machines support the same MPMD threading model as
SMP machines. Existing SMT implementations tend to have just 2 threads, as this provides the
bulk of the benefit with the minimum overhead.

SMT allows a given set of execution resources to generate higher overall performance by
allowing the extra threads to utilize the resources that a single thread cannot. This can occur
in a superscalar system where one thread does not have enough instruction level parallelism
(ILP) to fully exploit the functional units, but more interestingly it can occur when one thread
is blocked due to a cache miss. This means that SMT provides a limited degree of latency
tolerance. However, each thread shares cache resources with other threads running on the same
processor, which raises the possibility of different threads impairing each others’ performance
by causing cache thrashing. Minimizing this requires an even greater degree of memory access
locality within each thread, or alternatively a degree of memory access locality between threads.

Most SMT designs aim to avoid impairing the performance of a single thread, if only one
thread is active.

A fine grained multithreading processor typically supports more hardware threads than an
SMT machine. Hardware threads proceed down the pipeline in turn, with each thread having
to wait a certain number of cycles before another instruction can enter the pipeline from that
thread. This can extend all the way to the entire pipeline length, so that each thread can only be
active in one pipeline stage at a time.

Some FGMT processors support a full architectural model for each thread and thus appear
to the OS similar to an SMT processor. Other FGMT processors provide a limited amount of
state per thread and do not support traditional OSs, but can instead run as a slave processor in
a heterogeneous system (certain GPUs use this model, discussed in more detail below). In all
cases, as each thread is independent of the others, FGMT processors can in principle support the
MPMD threading model.

As each thread must wait several clock cycles between its instructions, fewer issue slots
are lost to a cache miss, which makes FGMT processors latency tolerant. Depending on the
processor, additional threads may be available for scheduling while a thread is blocked, further
increasing latency tolerance.

Unlike SMT designs, an FGMT processor does not offer the full performance of the
processor to a single thread, a certain minimum number of threads must be active before the
processor becomes fully efficient. Therefore, programs not exploiting multiple threads are
unsuitable for FGMT processors.

Many core processors Many core processors are distinguished from traditional SMP systems
in that they generally have a much larger number of processors (systems with over 1000 cores
have been designed), but each one is simpler than in a traditional SMP system. In particular,
many techniques usually employed to maximize single thread throughput (e.g. deep pipelining,
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branch prediction, speculative execution, superscalar, out of order processing) are not used. Each
processor therefore offers lower performance, but in return takes up less area and consumes less
power. Many core processors aim to offer improved overall throughput and power efficiency
compared to an SMP system of comparable size.

Many core processors do not tend to have the same level of memory coherency as SMP
systems, since cache coherency protocols do not scale well to such sizes. Many core processors
often include “scratch RAM” private to each processor and managed explicitly by the program-
mer to avoid this complexity. A shared view of memory is usually supported at some level, but
performance may be low. Some many core processors group processors into clusters, providing
higher performance communication between cluster members.

Each core is independent of all the others, so there is no need for different cores to run the
same program. However, in a clustered system overall performance can be improved if the cores
of the cluster work together on shared data.

Many core processors do not necessarily include full support for running the OS on each
processor, as OSs do not tend to scale well to such high core counts and the support for privileged
operation adds overhead to each processor.

As each core is independent, many core processors support the MPMD threading model.

General Purpose Graphics Processing Units (GPGPUs) Since their inception as fixed
function graphics accelerators, GPUs have evolved into powerful parallel processors capable of
running general-purpose programs On appropriate workloads GPUs offer far higher performance
and power efficiency than similarly sized SMP systems.

A key difference between GPUs and CPUs is that while CPUs can operate on their own by
running supervisory (OS) software as well as performing useful work, the threading model of
GPUs makes them unsuitable for running OS software. Any system with a GPU must therefore
include a CPU as well, which runs driver software to control the GPU and issue tasks to it.
Therefore there is no need for the GPU to implement privilege levels or system instructions.

GPUs implement a Single Program Multiple Data (SPMD) model, so for example when
running a pixel shader, the GPU creates a thread for each pixel to be processed, which runs the
program for that specific pixel and then terminates.

Unlike CPUs, which provide a fixed number of hardware threads that run continuously
and are switched between programmer threads in software, GPUs include dedicated hardware
to create and terminate threads. When the host CPU requests execution of a program over a
domain, the GPU does not necessarily start all of the requested threads immediately; it can start
a smaller number and continue to spawn additional threads as existing ones complete. This
hardware thread management significantly reduces the penalty for short-lived threads: graphics
tasks often include programs executing a handful of instructions per thread.

Similarly to many core systems, the performance of each individual thread is not important:
the overall throughput (performance of all threads in aggregate) determines the performance of
the GPU system. GPUs take advantage of this fact by running a very large number of threads
(usually thousands) in parallel, while only providing modest performance for each individual
thread.

Execution resources are shared amongst threads. Most GPUs implement a fine-grained
multithreading (FGMT) model, where threads are switched at short intervals (typically on every
cycle). Generally sufficient threads are present that any given thread only needs to have a single
instruction in flight through the pipeline at a time. This eliminates the need for branch prediction
(as a thread can wait until the branch is resolved before beginning to execute the next instruction)
and forwarding paths (results can always be committed to the register bank before the next
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instruction runs), reducing the area needed per execution unit and the energy used to execute
each instruction. If a thread has to wait a long time for a memory access, other threads can be
run in the meantime; the waiting thread causes little or no drop in throughput. However, if many
threads issue memory accesses in parallel then the overall memory bandwidth available can
limit the rate at which requests can be satisfied. This means that compared to CPUs, GPUs are
tolerant of latency and sensitive to memory bandwidth.

FGMT-based GPUs can achieve greater performance by using SIMD techniques to allow
each thread to do more work. In graphics workloads, manipulation of pixel data is often
amenable to being accelerated in this way because each pixel has several color components
which must be manipulated in the same way. The 4 channels of RGBA pixel data map neatly
onto 4-lane SIMD features. GPUs designed this way can expose these SIMD features to
programmers of GPGPU tasks.

Many GPUs achieve further area and energy savings by using a Single Instruction Multiple
Thread (SIMT) model. In this model, several threads are grouped together. Such groups are often
referred to as warps (though strictly this term refers to NVIDIA GPUs). The same instruction is
run simultaneously by all the threads in a warp, which means the threads can share all the fetch
and decode logic. Warps are then scheduled in a manner similar to the threads on an FGMT
GPU, with several warps being active at a time. When the threads of a warp diverge, following
different execution paths, one candidate instruction is selected and only those threads that need
to run that instruction proceed while the others wait. SIMT machines are therefore sensitive to
thread divergence.

Both FGMT and SIMT GPUs are able to exploit further parallelism by putting down multiple
sets of execution units (each set is called a ‘core’). This allows families of GPUs with varying
performance characteristics to be designed relatively easily by varying the number of cores
included.

Discrete GPUs have dedicated global memory, which offers significantly higher bandwidth
than main memory. Some GPUs employ caches to reduce the need for off-chip memory accesses,
but others include software-managed local memory instead of or in addition to a cache.

Since several threads running on a GPU share execution resources and access to the memory
system, there is considerable benefit to memory access locality between threads. If a GPU uses
warps, it may be able to combine (coalesce) memory accesses from several threads within the
warp if they are accessing a contiguous block of memory. In GPUs which include small local
memories close to the execution resources, threads within a warp (or larger group of threads)
may need to co-operate on their use of this memory.

Modern GPUs support virtual memory, but since they do not run the OS they cannot handle
demand paging directly. This can be worked around by making a request to the CPU to fix
up page faults, but for the sake of driver simplicity and performance many GPU drivers opt to
use a different memory map for the GPU and ‘lock‘ all memory objects used by the GPU into
memory to prevent page faults. This approach is also necessary for GPUs with private dedicated
memory.

Because GPUs evolved to run graphics tasks, they often have specialized instruction sets
tailored to include these graphics functions. Historically, the interface to GPUs has been graphics
libraries such as DirectX [21] or OpenGL [16], with programs (called shaders) specified in
relatively high-level languages. The actual instruction set of the GPUs is therefore not exposed
to programmers directly.
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3.2 Programming Model Design Decisions

In Section 3.4 we provide a comprehensive overview of parallel programming models. To
prepare for this, we first provide an overview of the various components and features that must
be considered when designing a parallel programming model.

3.2.1 The origins of different programming models

A number of different models have been developed in order to address the problem of pro-
gramming parallel processors. The existence of so many different models is driven by three
factors.

1. To support the wide range of different parallel architectures a model has to be com-
plex enough to deal with all the differences or abstract enough to hide them from the
programmer. Neither of these options can deliver full performance across the range
of architectures. As a result, a number of different models have been developed that
target particular parallel architectures but which may be inefficient (or even impossible to
implement) on other architectures.

2. Another contributing factor is the difference in the nature of the problems that are being
addressed. A model that works well for intensive computation on simple data sets may
not be appropriate for problems that require complex data structures or algorithms. The
importance of parallel processors in graphics and high-performance computing has led to
architectures and software that are biased towards intensive computation on simple data
sets.

3. The final factor is the political and commercial factors surrounding each model. In some
cases similar models have been developed by different commercial entities in order to
avoid using technology developed by a competitor. In other cases models have been
developed in isolation to avoid the complex political issues involved in a standardization
process. And sometimes new models have been developed simply because existing
models were ”Not Invented Here”.

These factors continue to affect the popularity of existing models and the development of
new models, and so there is no prospect of a single model gaining universal acceptance. These
models are still evolving, and we anticipate that in the long-term a few models will dominate
and the remaining ones will disappear or remain restricted to particular programming niches.

3.2.2 Describing parallelism with threads

In order to take advantage of a parallel processor the programming model must allow the
programmer to create a number of parallel threads and describe what each of the threads is
going to do. Two basic models for this are Multiple Program Multiple Data (MPMD) and Single
Program Multiple Data (SPMD), which we described in Section 3.1.2.

The MPMD model is effective for targeting SMP and MT processors but does not perform
well on the massively-parallel architectures. SPMD is more effective for targeting massively-
parallel processors, but is a subset of MPMD so can also be used to target SMP systems.

With either model it is possible to take advantage of SIMD instructions by using them within
the individual threads.
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3.2.3 Choice of programming language

A program for a parallel processor can generally be divided into two parts: serial code and
parallel code. The language used to program these two parts varies significantly between models.

• The serial code manages the user interface, prepares the data for parallel computation
and deals with the results of the computation once it is complete. Most models use an
existing programming language for this part of the program, though in some instances a
new language has been developed that encompasses both the serial and parallel parts of
the program.
• The parallel code is used for the parts of program that can take advantage of the multi-

threading features of the parallel processor. There is much more variety in the languages
used for this code. Some models use the same language as the serial code and represent
parallel processes using libraries or by marking up the code. Most models use a parallel
language that is closely related to the serial language but with restrictions on existing
features and with the addition of new language features to address issues specific to
parallel programming. A few models use a completely different language for the parallel
code while others allow parallel code to be called from serial code written in a variety of
standard programming languages.

The way in which parallel code is integrated into the serial code varies between different
programming models. Where the parallel code uses the same language as the controlling
program the integration can be seamless, with serial and parallel code being mixed within the
same function or even the same block.

Where a different language is used for the parallel code it is written as a separate function.
In some models this function must be in a different file that is compiled separately from the
main program while others allow mixing of serial functions and parallel functions in the same
source file.

In some cases the model is supported using only API functions, in other cases it is supported
via extensions to the serial language or a combination of API functions and language extensions.

We discuss language choices for serial and parallel code for a variety of programming
models in Section 3.4.

3.2.4 Machine-code generation

The time at which the parallel code is compiled into the machine code varies between program-
ming models.

Traditionally (and e.g., in POSIX threads [27] and OpenMP [24]), the parallel code is
compiled at the same time as the serial code and delivered as part of the program. This is often
the case where the same language is used for the whole program, or where the same instruction
set is being targeted by both parts.

Compilation may be delayed so that the parallel code is delivered in source form and
compiled when the program is run; this is the approach used e.g. in OpenCL [17]. The run-time
compiler can generate and optimize code for the particular processor implementation available
in the system. In this case it is possible for the run-time compiler to optimize for processor
implementations that were not available when the program was written.

A hybrid approach (taken e.g. by NVIDIA’s CUDA programming model [22]) involves
two-stage compilation in which the parallel program is converted to an intermediate form which
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is then delivered with the rest of the program. When the program is run this intermediate form is
compiled to the final machine code for the parallel processor. This model simplifies the process
of run-time compilation while still allowing optimization for the specific available processors.
This model is also useful when a hardware vendor does not wish to expose the true instruction
set of their architecture, but is willing to make available a suitably low-level byte code which
can be targeted by optimizing compilers.

3.2.5 Memory model

Memory architectures have a significant effect on the programming model.

Uniform memory Some programming models provide a uniform view of memory so that
parallel code has exactly the same view of memory as the serial code. Memory allocated by the
serial code can be used directly by the parallel code, and in some cases memory can be allocated
directly by the parallel code.

While this is the most convenient model for the programmer it excludes the use of parallel
processors with segmented memory architectures, which includes most of the massively parallel
processors.

Segmented memory Processors with segmented memory architectures require data to be
explicitly copied between the different areas of memory. Therefore programming models need
a mechanism to describe how input data is written to the parallel processor and how results
are read back. There is often a limited amount of memory available so there also needs to be
a mechanism for allocating memory on the parallel processor that is separate from memory
allocation on the serial processor.

Programming models will typically allow the program to define blocks of shared memory
that have matching allocations on both the serial processor memory and parallel processor
memory. Some programming models require the programmer to explicitly copy data between
the different memory segments at the right time. Other models will automatically copy the data
to where it is needed, in which case there must be a mechanism for describing whether memory
is an input to the parallel code, output from the parallel code or both.

Private memory Each thread has its own stack but some models also provide access to
private memory which is additional local memory for each individual thread. This memory is
uninitialized when the thread starts and is discarded when the thread ends and can therefore
be used only as temporary storage. In many architectures this memory is significantly faster
than other memory and can be used to store intermediate results that are too large to be held in
registers.

Tile memory When tiles are supported a form of local memory is usually available that can be
accessed by all threads in a tile. This can be use to share results between threads efficiently, but
some form of tile synchronization is required to ensure that reading and writing this memory
happens in the right order.

Some programming models allow efficient copying of data between the different types of
memory in a segmented memory system and, in particular, efficient copying of data into local
memory. This can take advantage of any acceleration hardware in the parallel processor.

Constant memory Some models provide explicit support for constant memory which is
initialized by the serial code before the parallel code and is available to all threads. With
segmented memory models this data is automatically copied to the parallel processor as required.
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Shared memory In some cases the parallel processor uses the same physical memory as the
serial processor but not the same address space. In this case some models provide the ability to
create areas of shared memory that can be accessed by both the serial and parallel code without
copying. The model still needs to provide a mechanism for mapping between addresses on the
serial processor and addresses on the parallel processor.
Graphics memory Graphics has been a major driver for the development of parallel program-
ming and there is often an overlap between the compute and rendering parts of an application.
Therefore some models allow the allocation of memory that is specifically designed to be shared
between the parallel code and other graphics libraries. This allows parallel code to be used to
create images, textures and geometric data that are subsequently used to render graphical frames.
There will usually be constraints on the size and placement of the memory for these buffers to
allow efficient sharing.

3.2.6 Parallel data types

Parallel code may support new types that are not supported in serial code. These types include
fixed precisions numbers, 16-bit floating point (half float) and non-IEEE floating point. There
may be support for vector types, either as explicit 2/4/8 lane SIMD vectors or via coordinate
types with explicit x, y, z and w elements.

Conversely, parallel code may not support types that are available in serial code. Specif-
ically, high-precision floating point (double and higher) may not be available on the parallel
processor and thus may not be available in the programming model. Languages targeted at pure
computation may also lack other types such as Booleans, enumerations and bit fields.

Pointers

Pointers types may not be supported or may be restricted to simple data types rather than pointing
to objects or functions. This is particularly the case where a segmented memory architecture is
supported because pointers do not translate between the two memory areas. The type of data
that can be transferred between serial and parallel code are usually limited to scalar values,
simple vectors and simple structures.

Programming models that support multiple memory spaces tend to provide a set of pointer
qualifiers, allowing the programmer to specify which memory space a pointer refers to [22,
17, 6, 8]. For example, in the OpenCL programming model [17] a pointer can be marked
as private, local, global or constant. This allows the compiler to perform type
checking, providing some guarantee that memory spaces are used correctly.
Object-orientation Parallel languages will often lack the features used by object-oriented
programming, such as inheritance, data hiding and polymorphism. The lack of functions pointers
also makes it impossible to define abstract types.
Image types Special image data types may be provided to support the acceleration available
in graphics-based parallel processors. These allow fast access to 2D or 3D data but may have
restrictions on the dimensions of the image and the data type of the individual elements.
Textures Texture data types may be provided to take advantage of the support for textures in
graphical processors. These types allow efficient access to a 2D or 3D image and also provide
very fast interpolation to allow sampling of the texture at higher resolution. Textures may also
support efficient access to a filtered lower-resolution version of the image which can be used to
optimize a range of non-graphical problems in vision, image processing and elsewhere.
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3.2.7 Scheduling

Each programming model defines the way in which work is scheduled for the parallel processor
by the serial code. This is typically in the form of a task that is created by the serial code and
handed to the parallel processor for execution. Each task creates one or more threads on the
parallel processor. In a simple synchronous scheduling model the serial code must wait until the
task is complete before continuing.

Asynchronous scheduling allows the serial code to continue execution while the task is
being executed by the parallel processor. This requires a mechanism to allow the serial code
to wait for the task to complete before the results of the task can be read. This also allows the
possibility of multiple tasks being active at once which may allow for more efficient use of the
parallel processor.

In segmented memory architectures the cost of copying data between serial and parallel
code can be a significant part of the overall cost. Most models allow this copying to happen
asynchronously with kernel execution so that the results from the previous kernel and the input
for the next kernel can be copied while the current kernel is executing.

If a number of tasks need to be scheduled it can be complex for the serial code to manage,
especially if there are dependencies between tasks. Some models therefore allow groups of tasks
to be started together, with some description of the dependencies between the tasks (typically
a Directed Acyclic Graph). Likewise it may be possible to create queues of tasks that are
dispatched in order and executed on as many threads as are available.

3.2.8 Synchronization

Both the MPMD and SPMD models create multiple threads that can execute in an unpredictable
order and in parallel. The programmer cannot make assumptions about the order in which they
execute. In particular, threads that share memory locations must work correctly whatever order
the memory is written and read by different threads. In some cases this restriction is enforced by
the model but this is usually left up to the programmer to manage.

Atomics The model may provide mechanisms to avoid synchronization problems by allowing
multiple threads to safely access the same data. This may include the provision of atomic
operations on memory locations (+, -, min, max etc.) and critical subsections to protect longer
subsections of code.

Fences Memory fence primitives ensure that changes made by a thread are visible to all other
threads. This can be used to implement some simple data sharing mechanisms without the need
for more complex (and expensive) primitives.

Barriers
Models that provide support for tile memory will typically provide barrier instructions that

ensure that all threads have reached a given point before any thread goes past it. This ensures
that the results of all write operations before the barrier are visible to all threads after the barrier.
Barriers are a core feature of GPU programming models, including CUDA [22], OpenCL [17]
and C++ AMP [1].

Other synchronization primitives
Some models provide more complex synchronization primitives such as semaphores and

channels, but these bring with them a greater risk of introducing deadlocks into the parallel
code.
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3.2.9 Library support

In most cases the serial code has full access to all the system libraries including file I/O, UI code
and access to devices via drivers. The parallel code is typically very restricted in which system
services it can access and usually only has limited access to programming libraries for maths
and simple data structures.

Some parallel architectures provide acceleration for certain operations such as maths func-
tions, logical operations and bit manipulation primitives. These can be presented as new library
functions that are only available to the parallel code or as optimized versions of existing libraries.

3.3 Modifying Programs for Parallel Processing

It is usually necessary to modify programs to suit a parallel programming model in order to take
best of advantage of a parallel processor, or indeed to run on a parallel processor at all. These
modifications can vary from simple changes to a complete re-working of the whole program.
The modifications affect a number of different aspects of the program, including the underlying
algorithms and the data structures.

3.3.1 Algorithm Modifications

The extent to which the existing scalar algorithm has to be modified to run well on the parallel
processor can range from minimal changes in the calling code to a bottom-up re-write of the
algorithm. For any given algorithm the position in this range will depend on the programming
model being used and the nature of the algorithm itself. At the extreme end of this range it
might be necessary to find a completely different algorithm for solving the same problem which
has more inherent parallelism. For example, a bin-based sorting algorithm is going to be more
efficient on a parallel processor than one which requires access to all data on every iteration,
even if it is less efficient on a serial processor.
Data and task parallelism An algorithm can be made parallel in two distinct ways:

1. With data parallelism the threads are arranged so that each thread works on a different
part of the input data, with each thread performing essentially the same computation.

2. With task parallelism the threads are arranged so that each thread works on a different
part of the problem, typically in a pipeline, with different threads performing different
computations.

For more complex problems these models are combined in different ways. Tasks can be
nested (e.g. a pipeline of tasks which use data parallelism internally) and they can be applied
sequentially (e.g. a data parallel step followed by a task parallel step).
Algorithms for MPMD Where an MPMD model is being used there is typically good data
sharing between threads but a relatively small number of threads are available. In this case a
task-parallel algorithm is often a good fit: it typically requires fewer threads, and data can flow
efficiently between the various stages of the pipeline. If data parallelism is used it is typically at
a coarse grain, with each thread working on a significant portion of the input data.
Algorithms for SPMD An SPMD model is most efficient when each thread is performing the
same computation on contiguous data, so in this case a data parallel model is more applicable.

There is significant advantage in simplifying an algorithm to fit into a regular pattern,
even if this involves more computation than a more complicated algorithm. The overheads
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of managing the complexity outweigh the reduced amount of computation. For example, an
SPMD implementation of an n-body solver might compute the full N2 set of forces even though,
by symmetry, only N2/2 computations are actually required, because taking advantage of the
symmetry severely reduces the efficiency of the parallel processor.

In massively-parallel architectures the cost of computation is relatively lower than the cost
of data movement compared to a scalar processor. This moves the balance towards algorithms
that re-computed values rather than computing them once and caching them in memory. Thus
the use of techniques such as pre-computed look-up tables on a massively-parallel processor
may not provide the efficiency gains that would be expected on a scalar processor.
Use of SIMD Some problems can take advantage of SIMD with little modification, especially
algorithms that involve significant computation on 3D/4D coordinates or 3/4-channel images.
Models that provide support for parallel vectors (e.g. Intel’s ABB) can also take advantage of
SIMD automatically.

In other cases it is usually necessary to split loops or turn them inside-out to take advantage
of SIMD. For example, a loop that computes two set of values and writes them to two arrays
might be re-written as two loops, one for each array. With SIMD this could be more efficient
even if it meant re-calculating some values that were shared in the scalar version.

While these kinds of operations can occasionally be optimized automatically by a vectorizing
compiler, the programmer will usually have to explicitly code the SIMD operators or at very
least re-write the loop so that the vectorizing compiler can detect the pattern. The state-of-the-art
in automatic vectorization is surveyed in Section 4.2.3.

SIMD code is also inefficient if the number of elements being computed is not a multiple of
the lane width of the SIMD processor as some lanes will be unused. This kind of optimization
also introduces a dependency on specific hardware because the number of lanes and the particular
set of operations that are available is different between different hardware architectures or
implementations.

3.3.2 Data modifications

The data structures used by a program depend largely on the algorithm used, but within a given
algorithm there may be changes that have to be made to fit a particular programming model or
in order to achieve acceptable performance.
Scalar types The underlying data type may need to be altered to improve efficiency on a
parallel processor. This is especially true if double-precision floating-point values are used
because a number of massively-parallel architectures do not support them or support them with
limited performance. The algorithm may have to be modified to cope with the reduced accuracy
of single-precision floating-point.

Conversely, some algorithms may be able to accept the reduced accuracy provided by
half-precision floating-point or fixed point numbers which may provide better performance on a
parallel processor. It may also be necessary to pay more attention to the use of unsigned data
types as these may perform differently from signed data types.
Structures of Arrays Many algorithms work on structured data, where a number of values
are grouped into a structure which is then replicated in a large array. This arrangement is known
as an Array of Structures (AOS) and is efficient on a scalar processor where the single thread is
operating on each array element in turn.

AOS is not so efficient where multiple threads are operating in parallel on different elements
of the array. In this case the data is more efficiently stored by having separate arrays for each
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element of the structure. This arrangement is known as a Structure of Arrays (SOA) and is
particularly effective on SIMD architectures where multiple values can be read and written from
sequential memory.

With very large data sets the separation between related data values in AOS can cause
problems with caching and TLBs. In this case it can be effective to limit the size of an SOA to
fit within the page size and then replicate this multiple times, leading to an Array of Structures
of Arrays (AOSOA).

In each case the most efficient partitioning between structures and arrays will depend on the
particular architecture being targeted.

Image formats Algorithms that process pixel data can choose between the usual interleaved
formats or planar formats where the data for each channel is in a separate area of memory. The
trade-offs are the same as for the AOS vs. SOA choice for non-pixel data.

The 2D nature of image data makes other data arrangements even more efficient for parallel
processing. In particular the data can be arranged in image tiles where each tile covers a 2D
rectangle of the image but is stored linearly in memory. This provides better memory locality
for algorithms that operate on regions of the screen, but it increases the overhead of address
calculation of a pixel. Parallel processors avoid this overhead by providing special hardware to
compute these addresses if the image data is stored in a supported format.

3.3.3 Partitioning

A key issue when targeting a parallel processor is determining which parts of the program
can be accelerated and which parts are best left running on the serial processor. This depends
greatly on the size of the problem and the overheads associated with using the parallel processor.
Section 3.5 on performance covers this issue in more detail.

3.3.4 Automatic translation

In some cases it is possible to transform serial code into parallel code automatically. The most
mature form of this is vectorization of scalar code to allow the use of SIMD instructions, which
is implemented in most modern compilers. In some cases this can be extended to creating
kernels for SPMD machines. Translation of serial code to parallel code using MPMD threads is
more complex and is not applicable to most problems without sophisticated compiler analyses,
significant modification to the original program, or both.

The most promising techniques for automatic transformation of serial to parallel code are
based on the polyhedral model; we present the state-of-the-art for these techniques in Chapter 4.

3.4 Current Programming Models

3.4.1 Major GPU Programming Models

We provide a detailed overview of the three main programming models for GPUs: OpenCL,
CUDA and C++ AMP. We note that OpenCL and C++ AMP are general-purpose models and go
beyond the scope of GPU programming.
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OpenCL

OpenCL (Open Compute Language) was originally created by Apple and is now maintained by
the Khronos group. It is a pure C API which allows execution of SPMD kernels on a variety of
devices. OpenCL is particularly suited for executing tasks on GPUs.

Motivation. OpenCL was created as Apple wanted to exploit the potential of GPGPUs, but
did not want to be tied to NVIDIA’s CUDA. By working with the Khronos group they were able
to make it a vendor-neutral API which would be compatible with any GPU on any OS.

Parallel Language. Kernels are written in OpenCL C. This is a derivative of C99 which adds
support for features commonly found on GPUs such as native SIMD data types, and removes
support for features such as function pointers. There is no library support, but an extensive
set of built in functions is provided. These include essential SPMD model functions (i.e. get
coordinates), math functions (sine, cosine, etc.), image functions (to access texture functionality)
and synchronization functions.

Task Dispatch. All OpenCL tasks are dispatched to queues. Each queue is associated with a
single device but it is possible to associate several queues with the same device. The programmer
can specify whether tasks submitted to a queue must execute in order or can be reordered by the
runtime.

Kernels are dispatched from serial code running on the host processor via afunction called
clEnqueueNDRangeKernel(). The programmer specifies the kernel, domain and optionally
tile (called a ‘workgroup’ in OpenCL) size. It is also possible to dispatch other operations such
as memory copies. Each submitted task optionally has an event object associated with it —
these can be used to express dependencies between operations, enquire about the status of on
operation, or direct the host processor to wait until a given task has completed.

Synchronization. A variety of synchronization features are provided. Within kernels, atomic
operations are supported via built in functions. These include a variety of integer operations and
compare-and-swap. Moreover, within kernels, barriers are supported which cause each thread in
a tile to wait until all threads have reached the barrier before all threads continue running.

Between kernels, or between kernels and the host CPU, command queue barriers are
available which cause all tasks before the barrier to complete before any subsequent task starts.
There is also the facility to cause the host to wait for the completion of a specific task before
continuing.

Memory Model. OpenCL uses a segregated memory model. All memory operated on by
kernels has to be in the form of ‘memory objects’. At the runtime level these can be either
‘buffers’ (flat arrays of memory) or ‘images’. In kernel code, a buffer appears as a C-style pointer
and can be used in a similar fashion. Images appear as opaque objects and can only be accessed
by built-in image access functions. These functions use a GPU’s texturing capabilities and so
images can be more efficient than buffers, depending on circumstances and the GPU in use.

On the host processor, there are explicit functions to copy data between host memory and
memory objects. There are also routines to ‘map’ a memory object directly into host memory.
When creating a memory object, it’s possible to provide a pointer and ask the runtime to use
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this to store the data via the CL_MEM_USE_HOST_PTR flag, but it is up to the runtime how this is
actually done. In cases where the host CPU is being used as the compute device this is obviously
most efficient as the memory can be used directly, but when a GPU is being used as the compute
device it’s likely the runtime will perform a copy anyway. Even when CL_MEM_USE_HOST_PTR

is used, it is still necessary to call the mapping functions before the memory is guaranteed to
reflect any updates made by the GPU device.

Compilation Model. In order to execute a kernel, a kernel object must be created at runtime.
There is an option to use a precompiled binary for this, but compatibility is only guaranteed
when using the same driver revision and the same device. The recommended route is online
compilation from source at runtime. Source is provided via one or more C strings, which allows
code to be generated at runtime or just read in from a file.

Minimum Steps Needed to Run Parallel Code. OpenCL is a complex API with a lot of
explicit control available to the programmer; therefore there are a lot of steps involved:

1. Get list of supported platforms (often only 1).
2. Get list of supported devices on chosen platform (often only 1 GPU).
3. Create a context object against the relevant platform and device.
4. Create a command queue against the device and context.
5. Create a program object from the OpenCL C source code.
6. Compile the program object.
7. Create a kernel object from the program object.
8. Create any memory objects needed and copy input data.
9. Set kernel arguments.

10. Enqueue kernel execution on the queue.
11. Flush the queue to make execution actually occur.
12. Copy output data back to the host.

Discussion. Although it is pitched as a ‘universal’ compute language, OpenCL is pretty
clearly tailored to the strengths and weaknesses of current generation GPUs. The memory
model, instruction set and task scheduling aspects are all neatly captured by memory objects,
online compilation (program objects) and NDRanges.

As a pure C API, compatibility is maximized (integration is via an include file and a shared
library, as for any library code), but the lack of a language extension does lead to a lot of
convoluted boilerplate code. However, this is ripe for encapsulation in friendlier higher level
routines, in particular C++ objects. Standard C++ bindings exist which are easier to use.

OpenCL can be used to exploit the multiple cores of an SMP system as well as a SPMD
GPU system, although this is not an attractive option in isolation as other programming models
(e.g. OpenMP) are much easier to use for this purpose. However, the ability to use a common
interface and runtime to target either a GPU or a CPU can be a distinct advantage as it allows
portable programs to be created which can exploit the GPU if present, or fall back on the CPU
otherwise, without having to maintain two copies of the code.

Another aspect of OpenCL is its flexibility; the hierarchy of platforms and devices means
that it can potentially work on a system with several GPUs or accelerators from a mixture of
vendors, but at the cost of complexity which the programmer has to deal with even in the most
common case of a single GPU from a single vendor.
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CUDA

CUDA (Compute Unified Device Architecture) [22] was the first mainstream language for
performing compute on Graphics Processors. It was developed by NVIDIA and is currently
supported only on their devices, though there are plans to make it available more broadly.

CUDA represents the GPU as a coprocessor that can run data-parallel kernels and provides
extensions to the C language to (1) allocate data on the GPU, (2) transfer data between the GPU
and the CPU and (3) launch kernels.

Motivation. As OpenGL and GPUs became more programmable and powerful, programmers
started experimenting with expressing problems as OpenGL shaders, using various tricks to get
data into the required format for OpenGL processing, and extract data from the output. This
worked but was limited by the constraints of the OpenGL API. NVIDIA recognized that with
minimal extra hardware, GPUs could be made more accessible for general purpose compute,
and this could be a competitive advantage in the GPU market. CUDA was created to facilitate
this.

Parallel Language. The parallel language is based on C99 with a number of extensions.
Kernels are written as separate functions and can be in the same source code file as the serial
code or in a separate file. Parallel functions that can be accessed by serial code are specified
using the __global__ attribute and local functions for the parallel code use the __device__
attribute. The kernel has access to built-in variables which provide the location of the kernel
within the domain, the tile size and the location within the tile.

A CUDA kernel executes a piece of sequential code on a large number of threads in parallel.
These threads are organized into a grid of CUDA blocks. Threads within a block can cooperate
with each other by (1) efficiently sharing data through a shared low-latency local memory and
(2) synchronizing their execution via barriers. The scheduling unit is not the individual thread
but a group of threads called a warp. Every cycle, the scheduler in each multiprocessor chooses
the next warp to execute. If threads in a warp execute different code paths, only threads on the
same path can be executed simultaneously and a penalty is incurred.

A number of vector data types are provided containing 1–4 elements of the standard integer
and floating-point types. Moreover, CUDA provides a comprehensive set of maths libraries
for parallel code. It also includes some special operations that acknowledge the fact that the
implementation uses warps internally, including the ability to shuffle data between different
threads in the same warp.

Task Dispatch. CUDA kernels are dispatched from the serial code using a language extension
to specify the tile size and the number of tiles in each dimension. The scheduling mechanism
allows asynchronous operation of kernels by creating streams of commands. Events can
be placed within the stream to allow the serial code to monitor the progress of the parallel
operations.

Synchronization. Tile synchronization is available via barriers using the built-in function
__syncthreads() from within the kernel, with variants that allow simple voting between
threads. Various fence commands are provided to ensure consistency within various levels of
memory. Moreover, a broad range of atomic operations is available, including add/sub, min/max
and bitwise operations.
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Memory Model. CUDA supports global, local and constant memory. Variables can be marked
with the appropriate attribute to indicate where values should be placed and pointers can be
marked to indicate which kind of memory they are addressing. In most cases data is explicitly
copied between host and GPU using the cudaMemcpy() API function. CUDA also supports
shared memory which is treated as global memory by the kernel but required special handling
by the serial code. It is also possible to allocate write-combined memory which has performance
advantages for data that is passed from the serial to the parallel code. Images and textures are
supported using a templated texture class.

Compilation Model. CUDA uses a special compiler (nvcc) that separates the serial and
parallel code in the source file. Serial code is fully compiled for the target CPU. Parallel code
can be fully compiled but is typically compiled to a low-level intermediate language called PTX.
This language is close to the instruction set of the underlying processors but can be optimized by
the compiler before execution on a particular platform. Using PTX is the only way to support
portability of code to future NVIDIA platforms. It is also possible to write PTX directly for
highly optimized code.

Many details must be exposed to the compiler in order to generate efficient CUDA code. The
fine grained multi-threading or thread block to multiprocessor mapping, are hidden, however.
The GPU can be seen as an arbitrary large number of (virtual) SIMD-like processors could be
present, each with its own register file and private scratchpad memory, all sharing a common
DRAM-based main memory. In addition, some constraints are defined when accessing these
different memory levels. Unlike the execution model, where the execution unit is the warp, the
memory access unit is the half-warp. When threads within the same half-warp access to global
memory, the threads must access to consecutive memory positions, or more than one request is
launched; this is commonly called uncoalesced access. On the other hand, the shared memory
is a banked memory; so threads within the same half-warp that access different elements in
the same bank will incur bank conflicts. The violation of these restrictions usually result in
slowdowns.

Minimum Steps needed to Run Parallel Code.

1. Allocate device memory.
2. Copy input data in to device memory.
3. Invoke kernel.
4. Copy output data from device memory.

Discussion. CUDA is the original GPU compute language and is the incumbent that others
have to beat. However it is a closed language and therefore compares poorly against cross-
platform standards. CUDA is designed specifically to operate on NVIDIA processors and
encourages a model that is efficient on such machines but might not perform so well on other
architectures.

Given the paramount importance of the memory system, the compiler must be aware of
the coalescing requirements, so it must explicitly take into account the difference between a
warp and a block of threads even if they are executed on the same virtual SIMD processor.
Nevertheless, as for other language extensions, CUDA makes it easier for programmers to get
code running by requiring less boilerplate code which must be written and debugged. Mixing
parallel and serial source code also makes it easier for existing code to be adapted, although
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programmers still need to separate parallel code into separate functions and take account of the
memory model requirements.

C++ AMP

C++ AMP (Accelerated Massive Parallelism) [1] is an SPMD model from Microsoft that uses
versions of the C++ language for both the serial and parallel code.

Motivation. C++ AMP is an attempt to simplify the processor of writing programs for
massively-parallel processors in a Microsoft environment by using C++ language features.
It is essentially a way of targeting the DirectCompute part of DirectX without having to create
all the graphics infrastructure which that requires.

Parallel Language. The parallel language is a subset of C++ with a small language extension
to identify parallel code. The restrict keyword can be applied to any function and it defines
whether that function can be used in serial code, parallel code or both. Parallel functions are
labeled restrict(amp) and serial functions are labeled restrict(cpu) or left unlabelled.
Parallel code can only call functions that are restricted to amp (or both cpu and amp) which
prevents the use of any system functions and most library functions. This also provides a
mechanism for providing libraries that support specific acceleration features on the parallel
processor that are not available to serial code. C++ polymorphism allows the creation of separate
serial and parallel versions of the same function with the appropriate version being selected by
the compiler based on the restrictions of the calling function.

There are significant restrictions on the C++ features that are allowed in parallel code.
Pointer support is limited to simple data pointers held in variables (hence no virtual functions),
and there is no access to static or global variables. The code must be able to be inlined at
compile time which prevents the use of recursion or any form of dynamic linking.

C++ AMP is an evolving standard and some restrictions will be removed in future versions
or are specific to the Microsoft implementation.

Task Dispatch. Tasks are dispatched using a parallel_for_each() function that takes a
domain and a kernel. The kernel takes a single parameter, the index, which defines a position
in the domain. parallel_for_each() calls the kernel in parallel for every position in the
domain and the function can extract the x and y offsets from the index as required.

The scheduling mechanism allows multiple queues to be created, each of which allows
multiple parallel_for_each calls to be submitted without waiting for the previous one to
complete. Moreover, various atomic operations are available.

Memory Model. C++ AMP provides a segmented memory model and uses C++ templates to
create areas of memory that can be used by the parallel code. The runtime manages the copying
of data between the different memory segments as appropriate, and uses ‘const’ and ‘write-only’
hints to avoid copying data unnecessarily.

C++ AMP allows the domain to be sub-divided into tiles and supports local memory by
adding the tile_static keyword to a variable declaration within the parallel code. A single
instance of the tile_static variable is created for each tile and this is visible to all threads in
that tile. The index contains additional information about the position of the thread within the
tile and also provides a barrier object to allow synchronization between all threads in a tile.
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Textures are supported using a texture class, and some short vector types are also available.
There is a fast_math library that provides fast but less precise versions of various maths
functions and a precise_math library the supports double-precision values.

Compilation Model. Serial code is fully compiled for the target CPU but parallel code is
compiled to an intermediate language, DirectX HLSL. Functions that support both forms of
code are compiled twice, once for the CPU and once for the parallel processor.

Minimum Steps Needed to Run Parallel Code

1. Wrap host memory in array classes.
2. Call API to invoke kernel.

Discussion. C++ AMP provides a reasonably clean mechanism for adding parallel code to
existing applications and allows programmers to re-use some knowledge of C++ when writing
kernels. It is a relatively new model and lacks the more sophisticated features of other, more
mature models.

3.4.2 Other Major Programming Models

We now consider four further parallel programming models that are in widespread use and
of significant relevance to the CARP project, though not specifically geared towards GPU
programming. We present a brief description of each in the main text, and in Appendix A we
provide a comprehensive overview of each model.

Table 3.1 compares the programming models discussed in this section and Section 3.4.1
according to several key features.

POSIX threads The POSIX threading API (‘pthreads’) [27] is an IEEE standard and serves
as the native thread API on most UNIX-like systems. It is a pure C API implementing the
MPMD model. Some compilers (including GCC) include a language extension for thread local
storage (__thread keyword).

OpenMP OpenMP [24] is maintained by the OpenMP Architectural Review Board, an inde-
pendent non-profit corporation composed of members from various interested parties. OpenMP
is a language extension for C and FORTRAN which allows programmers to use pragmas to
indicate parallel subsections of code. OpenMP is generally implemented on top of a native
threading library — pthreads in the case of UNIX-like systems.

Renderscript Renderscript was created and is owned by Google as part of their Android
platform [2]. Renderscript was introduced as a way to allow applications to include high
performance code without making them machine dependent. In addition to its compute features
Renderscript also includes graphics rendering functions. We consider it strictly as a compute
acceleration language.
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OpenACC OpenACC [23] is a maintained by a non-profit corporation very similar to OpenMP.
OpenACC provides an API very similar to OpenMP in approach which allows offload of
processing to accelerators such as GPUs (as opposed to OpenMP which explicitly assumes that
all processing will be undertaken on the host CPU or SMP system).

3.4.3 Other Programming Models

We now survey a series of other parallel programming models which have recently been
proposed.

Thrust NVIDIA provide a C++ template library called Thrust [12] which provides some
STL-like abstractions for straightforward kernels. This hides the complexity of kernel dispatch
and simplifies copying between host and device memory. However, this is currently still tied to
CUDA.

Accelerator The PGI Accelerator language and framework [25] focuses on abstracting the
performance details of the target and automating much of the tuning, aiming for the high-
performance computing domain. It is much higher level than CUDA and OpenCL, and has been
the primary source of experience for the design of OpenACC, together with HMPP.

CUDA-lite CUDA-lite [29] was the first research project aiming to achieve better perfor-
mance portability on CUDA programs. The user provides basic annotations about how to
exploit parallelism and to deal with the offloading of live-in and live-out data. Based on these,
the compiler performs loop tiling and unrolling to exploit temporal locality, local (shared)
memory management, and attempts to help memory coalescing. Accelerator provides a similar
abstraction level and compilation techniques.

HMPP The CAPS HMPP language and workbench [11] uses markup in a simliar way to
Accelerator and provides back ends for both CUDA and OpenCL to allow cross-platform
portability. It allows functions to be marked as codelets that can be executed on a parallel
processor. Unlike Accelerator, it enables much finer control on the mapping and target-specific
optimizations, which may also be seen a drawback in terms of abstraction level. Like Accelerator,
it was a major source of inspiration for OpenACC.

Brook Brook is a very early model used to program GPUs for computation [5]. It is an
extension to C that provides stream-based classes. Kernels can be written to read and write
streams which can be converted to parallel code for efficient implementation.

Array Building Blocks (ABB) Intel provide a C++ template/API combination for optimizing
parallel computation [13]. As the name suggests, the focus is on problems that can be expressed
as operations on rectangular arrays and this is less applicable to more complex or irregular
problems.

Thread Building Blocks (TBB). Thread Building Blocks is a more comprehensive library
that originated at Intel but is now Open Source [14]. It provides library functions for a MPMD
programming model with uniform address space.
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Cilk Cilk was the pioneer MPMD task model and scheduling framework, provided by a simple
C++ language extension for spawning functions as new threads [4]. The academic version
featured a runtime system and a GCC-based compiler. It has more recently been acquired by
Intel, which provides it as a simpler, language-level alternative to TBB.

GCD (Grand Central Dispatch) According to Apple, GCD comprises “language features,
runtime libraries, and system enhancements that provide [. . . ] support for concurrent code
execution” for iOS and Mac OS X [3]. This is an MPMD model in which tasks are added to
queues (FIFOs) and executed by a set of worker threads.

DirectCompute DirectCompute [20] is an SPMD model for graphics processors that is similar
to CUDA and OpenCL but is more tightly bound with the DirectX graphics system and less
suitable for general purpose programs.

Offloading to short-SIMD accelerators Short vector SIMD architectures have also been
the subject of active programming model research and development. Offload [6, 7] is a set
of high-level C++ extensions, a compiler and a runtime system to accelerate kernels on the
Cell BE. Intel designed the similar, and contemporary, LEO programming model (Language
Extensions for Offload), targeting its x86-based GPU architecture [28]. The Sieve programming
model, geared towards automatic parallelisation of computational kernels via a novel semantics
of delayed side-effects [18, 9] has also been used for offloading to accelerator cores of the Cell
BE architecture [8].

Dynamic and managed languages GPGPU compilers, programming models, and active
libraries have also been proposed for managed or dynamic languages, such as Matlab [26, 15]
and Python (NumPy) [10]. These works facilitate the automatic (largely dynamic) extraction
of offloaded kernels, and the automatic generation of communication code. Loop and array-
oriented transformations are still needed to reduce the abstraction penalty and eliminate spurious
synchronizations and communications. On the other hand, the objective is to take advantage
from GPU accelerators but not to compete with the efficiency of lower level programming
models.

3.5 Performance

The performance of a parallel program can be affected by many factors, ranging from the overall
structure of the program down to the detailed choice of instructions and data structures.

3.5.1 Partitioning overheads

The first factor that affects performance is the way in which a program is partitioned between the
serial and parallel processors. There is a significant overhead in running on a massively-parallel
processor which may outweigh the benefits of parallel processing even if the algorithm itself
runs faster. It is therefore important that the parallel code is only used for problems that can
benefit from the acceleration that a parallel processor can provide, and that the overhead of
using the parallel processor does not exceed any benefit that is gained.
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One-off overheads Some one-off costs are incurred by any use of a parallel processor within a
program. The system will have to locate the available devices, load the drivers for those devices
and determine the basic capabilities. In some cases the parallel processor may be idle or even
turned off, so there is a significant cost in time and energy to enable the device even before any
computing is done. These overheads are lower for SIMD and MT systems because these features
are usually built-in to the serial processor and cannot be disabled. Likewise, SMP systems often
have all the processors enabled even if they are not being used so there is less one-off overhead.
Models such as OpenMP and CUDA can hide most of the complexity of this process from the
programmer but there is still an overhead involved.

Per-session overheads Additional costs are incurred every time a program switches between
the serial code and one or more parallel tasks.

For systems with a segmented memory architecture, it is necessary to copy the input data
from the serial processor’s memory into the parallel processor’s memory which can take a
significant amount of time. The results must then be copied back at the end of the computation.

Where multiple tasks are being executed, it is sometimes possible to overlap the copying of
data with computation. For example, the data for the first task is copied, and then while the task
is executed the data for the second task is copied, and so on. If the program is compute-bound,
this can reduce the copying overhead to a single copy in and out of the processor rather than a
copy for each task; copying the data, however, still costs energy even if it does not add to the
processing time.

Systems with shared memory do not need any copying but there will still be other costs. In
some cases, it will be necessary to flush the caches to ensure that all processors see a consistent
view of memory. In most cases, the different processors will have separate caches so the data
will have to be copied, costing time and energy.

These overheads can be reduced by packing the input and output data as much as possible.
For example, using single rather than double-precision numbers can significantly reduce the
copying cost and may be acceptable as long as the computation itself is done with double
precision. It is also important to run as many tasks as possible on the data once it is on the
parallel processor rather than switching frequently between serial and parallel code.

Per-task overheads Additional overheads are incurred every time a task is executed, and for
each thread withing that task. The per-thread cost can vary widely between different architectures
and different implementations of those architectures. The worst case is for a full OS thread in
an SMP system where there will be a significant amount of overhead in the operating system to
create and destroy the thread. In this case it is almost always more efficient to create a pool of
OS threads and use them to execute multiple tasks. With POSIX threads this has to be done by
the programmer but models such as OpenMP, Cilk and Grand Central Dispatch will handle this
process automatically.

Massively parallel architectures typically have hardware support for creating and deleting
these threads. While this significantly reduces the overhead of running a task, it is still generally
more efficient to combine computation into a few tasks where possible. However, there is a
tension between reducing the number of tasks and having enough tasks to allow data copying
to be efficiently overlapped with computation. The best choice of tasks often depends on the
particular target hardware.
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3.5.2 Processing performance

Once the problem has been appropriately partitioned between serial and parallel code it is
important to make sure that the parallel code is as efficient as possible. This involves selection
of algorithms that match the hardware and consideration of how the threads and tasks are
synchronized.

Parallel code for SMP and MT devices tends to have the same performance constraints as
serial code and so this section focuses on the performance of kernels running on massively-
parallel devices with an SPMD model.
Optimizing scalar code The code for an SPMD kernel is similar to code for a standard CPU
and many of the same optimizations apply but with different trade-offs. So, for example, it is
generally helps to unroll loops but care must be taken to fit inside the instruction cache, which is
usually smaller than a CPU instruction cache. Likewise it is important to eliminate common
sub-expressions and cache values in registers, but using too many registers can restrict the
number of threads that can be run simultaneously.

Compilers for SPMD programming models will perform many of these optimizations auto-
matically but they are typically less mature than compilers for established CPUs, so programmers
may need to perform more subtle or complex optimizations manually.
Built-in functions Massively-parallel devices usually have a number of built-in functions
that are implemented directly in hardware at high speed. These are typically oriented towards
graphics and geometry, such as sin/cos/tan and inverse square root. Using these functions can
significantly improve the performance of a kernel but in some cases they are less accurate than
the CPU equivalents so care must be taken to ensure the accuracy of the overall calculation.
Built-in functions are exposed to the programmer and/or compiler as intrinsics.
Divergence Many massively-parallel architectures implement some form of warp-based SIMT
which operates most efficiently when all the threads in a warp execute the same instructions
at the same time. These architectures suffer a significant performance penalty when a branch
is taken by some threads in a warp but not by others. The threads are said to diverge, and the
processor will typically have to execute the two code paths in separate clock cycles, effectively
halving the performance of the warp.

Divergence is particularly expensive if there are loops involved and some threads take more
iterations than others. In this case a significant proportion of the execution time can be spent
executing partially full warps, greatly reducing the efficiency.

If it is possible to duplicate calculations instead of taking a branch then this can improve
performance on warp-based systems. To avoid branches these devices often implement some
form of conditional execution by setting flags that control whether or not a series of operations
will be performed, a technique known as predication. However this is not exposed explicitly in
the parallel language so it is hard to take advantage of this for purposes of optimization.

The impact of divergence will depend on the particular architecture and even the particular
device being used, so achieving the very best performance requires tailoring the parallel program
to the specific target device.
Synchronization A key factor that affects performance is synchronization between tasks and
threads.

Thread synchronization is required when one thread reads data written by another thread,
but this will reduce performance if many threads are idle waiting for other threads to complete.

Atomic operations should be used where possible as these are implemented directly in
hardware and typically do not block other threads while they execute. Critical sections are a
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good way of protecting data structures that cannot be implemented using atomic operations, but
too much time spent in critical sections will reduce the time during which other threads can run.

Tile barriers can be used to synchronize all threads in a tile but this reduces the number
of executable threads until all threads for the tile have reached the barrier. Massively-parallel
processors rely on executing a large number of threads to be efficient and so barriers can
significantly reduce performance. This is particularly true if there is significant divergence
between the threads because all other threads will wait idly at the barrier until the longest-running
thread has reached the barrier.

Some models support warp-level barriers which apply to a smaller number of threads. This
is more efficient that a tile-based barrier but as the warp width is processor-specific this can
make code much less portable.

MPMD systems do not have the same issues with warps but primitives such as critical
sections and semaphores can be less efficient because the individual processors are less tightly
integrated than those in massively-parallel architectures.

In order to get the best performance out of a massively parallel processor there need to be
many threads running at the same time. If the program requires task synchronization, where
one task must complete before the second starts there will be a period when only a few threads
are active as the first task winds down and when the second task starts up. Where possible the
program should schedule multiple overlapping tasks so that there are always a large number of
threads to be executed. Models such as OpenCL provide mechanisms for scheduling sequences
of tasks and describing the synchronization between them. This is also an area where models
are advancing to allow more sophisticated ordering and to allow threads within one task to
synchronize with threads in other tasks.
Overlapping serial and parallel code Most models allow tasks to be scheduled asyn-
chronously to allow the serial code to continue executing while the parallel task is running.
This can improve performance if there is a significant amount of information that needs to be
pre-computed for future parallel tasks. However this may be less energy efficient than simply
turning off the serial processor while the parallel processor is running, so a trade-off needs to be
made.

The serial processor may be capable of running the parallel code, especially in SMP and
MT systems, so in this case there is no trade-off to be made.

3.5.3 Memory performance

The compute performance of massively-parallel processors is so high that the memory perfor-
mance becomes a major factor in overall program performance. The two key factors are the
locality of the data and the degree of sequential access to that data.
Sequential access Accessing memory in sequential order is always good for performance
but it is especially important on warp-based processors. When the threads in a warp access
sequential memory locations the memory system can read memory in large blocks in a few
cycles, especially when the block is aligned with a cache boundary. If the data for each thread
is held in a structure then moving from AOS to SOA (see Section 3.3.2) can greatly increase
performance because the data for each warp is laid out sequentially in memory. Arranging data
so that memory is accessed this way can improve performance by factors of 2 or more.
Locality The large number of active threads means that a limited amount of cache is available
for each thread. Therefore it is important to arrange the computation so that threads that operate
on the same data are scheduled at the same time.
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One way to improve locality is to use the image and texture classes that are provide by
models such as CUDA and OpenCL. These are optimized for fast access for algorithms that
operate on local regions of an image.

Tile memory In many cases the use of thread-local memory and tile memory can significantly
improve performance. This memory is typically much faster than global memory and it is
worthwhile copying data into that memory if it is going to be accessed multiple times. A typical
coding pattern is to have each thread in a tile load part of the local memory and then execute a
barrier, after which all the threads can access all the data in local memory. This can improve
performance by a factor of 2 or more on architectures with fast local memory.

Impact of data organization on serial code In many cases reorganization of data to support
parallelism will increase the performance of the parallel code at the expense of the serial code,
so it is important to consider this when partitioning the program. For example the use of SOA
rather than AOS may be more efficient for parallel code but it is likely to be less efficient for a
serial processor.

3.5.4 Automatic optimization

There is some research activity around creating systems that automatically optimize parallel
code for different platforms. This takes the form of a translator that converts a program in one
model to a second program in the same model that is optimized for the target platform.

Models that use an intermediate language, such as CUDA and C++ AMP, can do a certain
amount of optimization when they compile the intermediate form for the target device. They
have limited ability to re-order operations to optimize memory access and re-code sections to
match the specific instruction timings. However much of the abstract program information has
been lost by the time the intermediate language is generated so there are limits to the level of
optimization that can be achieved.

Models that allow run-time compilation of kernels, such as OpenCL, can perform broader
optimizations with potentially greater performance improvements. This comes at the cost of a
significant one-off overhead for compilation.

3.5.5 Coding time and efficiency

Another hidden cost is the time and expertise required to implement code using the parallel
model and to optimize it for best performance.

Converting serial code to parallel code will typically take longer than writing the original
serial code and the tools for debugging parallel code are significantly less mature than those
available for serial code. It is also a more complex problem to produce working code because
of the subtle timing issues that occur when many threads execute at the same time, further
increasing the development time.

Likewise the process of optimizing parallel code is much more difficult that optimizing
serial code. This is particularly difficult for a massively-parallel processor because of the range
of factors that must be taken in to account. Whereas optimizing serial code typically produces
code that is 2-5x faster, optimizing code for massively parallel code can change the performance
by 10-50x.

If a program is going to be run a large number of times on a large data set then it is
worthwhile investing a lot of time and energy into getting the most optimal program. But for
smaller problems with short development timescales the time take to develop a fully efficient
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parallel application may add unacceptable delay to getting the desired results. The software
team may also lack the level of expertise to write and optimized this code, further delaying the
development and increasing costs.

Energy efficiency The amount of energy used by a computation is often as important as
the time taken. None of the programming models has explicit support for ‘energy efficient’
computing, but the highest performing code is usually the most energy efficient because the
parallel processor is active for less time. This is especially true of memory-bound problems
where the energy use to read and write the data dominates the total energy cost. For other
problems it is possible that data is being read and written more often than necessary but this
is being hidden by the time taken to perform the computation. Massively-parallel processors
are particularly good at reducing the impact of memory latency which has the unfortunate
side-effect of hiding this inefficiency. In this case an algorithm that was more careful about
memory access would be able to reduce the total energy even if it did not reduce the time.

3.6 Portability

Code portability is an important issue in programming in general; producing more portable code
allows more value to be extracted from the development and debugging effort invested in it.

In the context of parallel programming models, there are various forms of portability that
may be considered:

1. Portability between different classes of parallel processors.
2. Portability between different parallel processors of the same class.
3. Portability between operating systems.

In all cases there are also degrees of portability: code portability means that a program will
run correctly on a different target, while performance portability means that a program will
achieve acceptable performance on a different target. Since these programming models are
mostly used where performance is of a high degree of importance, there is limited value to code
portability if there is a large performance loss.

This section discusses portability in terms of the broad categories outlined above as it applies
across the various programming models discussed in Section 3.4.

3.6.1 Portability between classes of parallel processors

The broad classes of programming models are MPMD and SPMD. These models map directly
onto the underlying hardware architecture, so in general an SPMD programming model must
be used when programming an SPMD processor, and an MPMD programming model when
programming an MPMD processor.

A machine optimized for SPMD programs cannot generally run MPMD programs in a
meaningful way, but the reverse is not true: a machine designed for MPMD programs can be
instructed to run the same program on several processing elements at once, making it compatible
with SPMD programming models. However, SPMD models do not allow the full flexibility of
MPMD processors to be exploited.

Parallel models on serial processors OpenMP and OpenACC can both be used to create
programs portable onto serial processors: their use of pragmas in C or special comments in
FORTRAN allows non-compliant compilers to ignore the directives and compile a serial program.
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However, both models also include explicit API calls which would cause incompatibility with a
non-compliant compiler. To avoid problems in this area, preprocessor macros are defined by
compliant compilers. OpenACC or OpenMP dependent code can then be guarded by checks
for these macros. Therefore maintaining full compatibility with non-compliant compilers is
possible but requires some care on the part of the programmer.

In other cases, a serial machine might be treated as a special case of an MPMD machine
with only one concurrent thread. pthreads and OpenMP can both be used on serial systems
although no performance benefit will be realized (and in fact performance may suffer due to
thread switching overheads). This can sometimes be useful where each thread has a distinct
self-contained task; the multi-threaded program can be easier for a programmer to reason
about and work with than a single-threaded program where the various tasks are intermingled.
This benefit needs to be balanced against the need to manage inter-thread communication and
synchronization in the multi-threaded program.

The SPMD-oriented models may provide compatibility with serial processors as a side
effect of supporting MPMD processors, which is described below.

MPMD models on SPMD processors As described above, the MPMD-optimized models
(e.g. pthreads and OpenMP) do not offer any portability to SPMD processors. However, as
an OpenMP program can be derived from a purely serial program very easily with a small
number of pragmas, it may be possible to port such a program to OpenACC with little effort (in
the simplest case by just changing pragma omp to pragma acc), but a program making more
complex use of OpenMP directives may not be portable at all.

SPMD models on MPMD processors The SPMD-optimized models provide varying degrees
of portability on to MPMD processors.

Renderscript offers the greatest level of code portability: at no point in Renderscript code
does the programmer nominate a target device; rather, the runtime is responsible for deciding
which device a given script will be run on. This makes it easier to generate a program which
will run correctly on many devices, but can cause problems if the runtime makes a scheduling
decision that results in poor performance. For example, a parallel script may end up running
on the main processor because the programmer has inadvertently used a feature the SPMD
processor does not support. This can be hard for the programmer to diagnose and fix.

OpenCL also offers portability onto MPMD processors, but under explicit control of the
programmer. Kernels in OpenCL are submitted to queues, each of which is associated with
a particular device. Depending on the OpenCL implementation, all processors in the system
might be exposed as OpenCL devices, so porting from one device to another is as simple as
changing the device associated with the queue. However, an OpenCL implementation might
include various extensions which may not be supported to an equal degree on the various devices
included in the system. For example, the CPU device might not support images, which may
be essential to good performance on the GPU device (images are not an extension but device
support for them is similarly optional).

CUDA, by default, requires a CUDA-compliant GPU in order to work. However, there are
various third-party additions and tools which allow CPU-only operation, but the third-party
experimental nature of these add-ons make them a poor choice for production programs. The
situation is very similar for C++ AMP.

OpenACC code can always be run on a serial processor (by ignoring the OpenACC direc-
tives). There is nothing to prevent an implementation using the directives to split a kernel across
the various processing elements of an MPMD processor.
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Performance Portability
Performance portability depends on the algorithm used and how it has been optimized for

SPMD processors. Many optimization techniques useful when programming SPMD processors
make assumptions that are inapplicable on MPMD processors. In some cases the effect is
benign, but in others it can result in significantly lower performance than an MPMD-native
implementation. Many common optimizations have this problem, for example:

• Choice of a ‘parallel algorithm’ where this is more expensive on an MPMD processor
(e.g. bucket sort).
• Repeated computation to avoid storing intermediate values.
• Reorganizing code to generate extra parallelism at the expense of extra steps.
• Coercing the domain to suit SPMD restrictions (i.e. 1D, 2D or 3D space).
• Reorganizing code to avoid thread divergence.
• Use of local memory resources that the MPMD processor does not necessarily have,

incurring unnecessary copy overhead.

Most of these optimizations make fundamental changes to how the program is structured,
and thus are independent of the programming model used. None of the programming models
have the ability to fundamentally restructure programs to avoid these problems, so even though
Renderscript (for example) can transparently run scripts on the ‘best’ device without code
changes, it cannot make GPU-optimized code run as well on a CPU as CPU-optimized code
would.

In some cases, relatively small changes can be made to make a program run reasonably well
on both SPMD and MPMD processors. For instance, an OpenCL program could include two
versions of a kernel and select the most appropriate one depending on which device is being
used at runtime. This is much easier for the programmer than maintaining two different versions
of the entire program.

3.6.2 Portability between different parallel processors of the same class

Many programs will run on a variety of different hardware configurations. Making a program-
ming model choice that will limit portability will have to take account of this. The importance
varies according to the application: for example, a high cost application for which users would
be expected to purchase a dedicated hardware platform can make more restrictive choices than a
low cost mass market program where the maximum possible potential audience is desired.
MPMD models The MPMD models considered above are open and hardware platform
agnostic. Programs written for them might include non-portable optimizations (such as SIMD
intrinsics) but there is nothing about the models themselves that is tied to a particular platform.
SPMD models OpenACC, OpenCL, Renderscript and C++ AMP are agnostic about the
SPMD processor targeted. Relatively mature OpenCL can be expected to work with any
suitable compute capable device. C++ AMP works on any device supporting DirectCompute.
Renderscript and OpenACC in principle are portable to any device, but in practice they are less
mature and implementations are less widespread.

CUDA stands out by being tied to a particular hardware vendor (NVIDIA), which limits
the portability of CUDA programs. This has spurred development of tools such as CU2CL [19]
which address this limitation by translating CUDA programs to widely supported OpenCL.
Performance portability As for portability between SPMD and MPMD, optimizations made
for running on one device may be detrimental to performance on another. As this may involve
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fundamental algorithm changes, this is not something the programming model’s compiler or
runtime can easily address.

In some cases, particular devices might suffer more performance portability problems than
others. For example, a vector GPU which uses SIMD execution units might require a kernel to
use SIMD types and operations for best performance. If this kernel is run on a GPU that has
scalar execution units, the SIMD operations can be emulated by running them in series one lane
at a time, which would realize most of the available performance on the scalar GPU. On the
other hand, a kernel written for the scalar GPU would not be able to exploit the performance
potential of the vector GPU, unless the compiler is able to autovectorize the kernel.

3.6.3 Portability between Operating Systems

Most models are reasonably portable across operating systems.
As pthreads is a POSIX specification, it works on POSIX-based operating systems, which

means most mainstream operating systems except Windows, although there is at least one
third-party implementation available. Windows includes a native threading library with similar
features, so pthreads code can be reasonably straightforwardly ported. C++11 includes native
threading support which will work with any compliant compiler.

OpenCL is platform agnostic; use of OpenCL on a particular device is conditional on an
OpenCL driver existing for that device and platform, but support is widespread.

OpenMP is platform agnostic; compilers exist for all common platforms.
Like OpenMP, OpenACC is platform agnostic. The compiler from PGI, a member of the

OpenACC consortium, only works on Linux with NVIDIA hardware.
CUDA is available for Windows, Mac OS and Linux.
Currently. C++ AMP is only available on Windows, while Renderscript is only available on

Android. In principle, both could be implemented on other platforms.
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4 Compiler Optimization
and Code Generation

This chapter describes the state-of-the-art research and tools related to compiler optimization
and code generation as relevant to WP4 of the CARP project. Section 4.1 discusses the state-
of-the-art parallelizing compilers, converting loop nests in plain C code into optimized GPU
code. Section 4.2 surveys the most important work related to the compilation flow of the CARP
project.

4.1 Automatic Parallelization Tools for GPUs

The three tools we survey in this section target NVIDIA GPUs using the CUDA programming
model (see Section 3.4.1). Automatic parallelization tools for other GPU architectures are just
starting to emerge; it is too early to evaluate them comparatively.

The CARP project will use CUDA when targeting NVIDIA devices, but favors OpenCL
as a more open, portable programming model. Future WP4 deliverables will refer to the
specific changes that have to be addressed when migrating from CUDA to OpenCL. The
differences between CUDA and OpenCL are presented in Section 3.4.1. From the point of view
of compilation, these differences are small. In contrast, differences among target architectures
are of course very important (the ARM MALI architecture is widely different from NVIDIA
desktop GPUs, for example). Harnessing these differences is one of the challenges to be tackled
in the CARP project.

4.1.1 Polyhedral Model Overview

The polyhedral model is a high level mathematical representation of a program. It uses polyhedra
and related mathematical abstractions to represent all dynamic instances of the statements
surrounded by loops, and all dependences between any pair of dynamic instances of any pair of
statements. It is applicable to the so called Static Control Parts (SCoP) of the program [7], which
are formed by loops with affine manifest boundaries and bodies with statements accessing arrays
with subscript expressions affine in the surrounding loop iterators and the problem parameters.

The polyhedral model assigns to each statement an iteration vector, with one dimension
per loop surrounding the statement. The first dimension represents the outermost loop, the
next dimension the following loop, and so forth. Each valid iteration vector for a statement
represents one of the dynamic executions of the statement, corresponding to a valid combination
of values for the loop iterators in the loops surrounding the statement. Each of these dynamic
executions of a statement is called a statement instance. The set of all valid iteration vectors for
a statement is called the statement domain.

In addition, the polyhedral model provides a compact representation of all the data de-
pendences between all pairs of instances. For a given pair of statements S1 and S2, all the
dependences from any instance of S1 to any instance of S2 form a relation between the domains
of S1 and S2. This relation is called the dependence relation between S1 and S2.

A SCoP is then represented in the polyhedral model by a directed graph. Each node
represents a statement, and is tagged with its domain. An edge going from S1 to S2 represents all
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the dependences from any instance of S1 to any instance of S2, and is tagged with the dependence
relation from S1 to S2.

This representation has been very useful in finding correct transformations of the original
SCoP, to expose parallelism [20, 21, 12] or to improve locality [12, 26, 3]. The usual way to
handle code transformation in the polyhedral model is by the construction of a schedule for each
statement. A schedule is an affine function that assigns to each point in the original domain
of the statement a point in a target space. The target space is common for all statements, but
several points of the original domains can be mapped to the same point in the target space.
Usually this target space is seen as a date space, in which the first dimension is more important
than the second dimension and so forth (like hours, minutes, . . . ). In this way the schedule
fixes a relative and partial ordering for all the instances. The transformed code is obtained by
generating code that scans all the statement domains respecting the partial ordering specified by
the schedule [6, 44]. However, it is also possible to build schedules in which some dimensions
have different interpretations, for instance mapping to computing units (processors) instead of
time units (dates). In addition, a non-injective schedule can be extended to an injective schedule
by adding new dimensions that are in essence parallel.

The process to build the schedule depends on the goal, whether it is parallelism, locality,
etc. Feautrier proposed an algorithm to find the set of all valid affine schedules for a given
SCoP [20, 21]. The algorithm exploits the affine form of the Farkas Lemma, expressing the
schedule for a statement as an affine combination of the inequalities in the dependence relation. It
basically consists of building a system of equations on the coefficients of the affine combination,
expressing the causality condition: if there is a data dependence from one instance to another
instance, the latter must be executed at a later date than the former. The valid solutions can
be obtained by solving this system of equations with any ILP solver. The set of all valid
solutions form a convex Z -polyhedron in the parameter space. To select among all valid
schedules, usually the ILP problem is re-formulated as a minimization problem. Selecting a
good minimization criterion to achieve a given goal is not trivial [20].

4.1.2 Loop Transformations and Code Generation for GPUs

We can split the methodologies followed by the tools selected for the evaluation, C-to-CUDA [5],
Par4All [34] and PPCG [45], in four main stages:1

• Exposing parallelism. Both C-to-CUDA and PPCG use the polyhedral model for this
stage. They select affine schedules for each statement to maximize the number of parallel
dimensions in the target space. On the other hand, Par4All only a combination of loop
fusion for locality enhancement and loop distribution to expose parallelism.
• Mapping to the CUDA model. The parallel dimensions are mapped to CUDA’s thread

block and thread identifiers.
• Data mapping. Basically, the tools decide where, in the memory hierarchy, to place all

data that is being accessed. If some array is to be placed in shared memory,2 specific code
is added to take care of the transfers from global memory to shared memory.
• Code generation. For both the host and the kernels.

1We used the implementation of C-to-CUDA included in pluto 0.6.2, Par4All 1.3 and version 3bf74858 from
PPCG’s git repository.

2By shared memory here we refer to what was called tile memory in Section 3.2.5. In the CUDA programming
model, tile memory is known as shared memory, and in this section we focus on polyhedral compilation techniques
that target CUDA.
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The first stage is similar for the three tools. However, some differences exist that affect
performance. Par4All treats each original loop nest independently, generating a specific kernel
for each one. On the other hand, C-to-CUDA and PPCG work on maximal SCoPs and apply
some locality optimization criteria to generate the schedule. As a result, the different loop
nests can be fused, at least partially. The generation of the schedule in both C-to-CUDA and
PPCG is based on the algorithm proposed in PLUTO [14, 11], although they currently evolve
independently. Par4All uses the schedule provided in the input source.

In the second stage, the three tools look for a parallel band in their respective schedules.
In this context, a parallel band is a set of one or more consecutive parallel dimensions (loops).
If more than one parallel band exists all three tools select the outermost band. The selected
parallel band is then mapped onto CUDA’s thread block and thread identifiers. Some important
differences exist between the three tools in how this mapping is performed.

In Par4All at most three parallel dimensions are selected from the parallel band, which are
then tiled. Tiling a dimension translates to strip-mining + interchange. Strip-mining divides
the dimension into bands, or stripes of iterations [2]. It replaces the original dimension by two
new dimensions, the first identifying the stripe and the second one identifying the point inside
the stripe. Combined with interchange, these stripes form multidimensional tiles. The outer
dimensions on stripes are called tile dimensions and the inner ones on points inside tiles is called
point dimensions. The rest of the schedule’s dimensions are not modified. The tile dimensions
are then mapped onto thread block identifiers. The point dimensions are mapped onto thread
identifiers. Furthermore, unique to Par4All is the support for dynamic tile size selection..

On the other hand, both C-to-CUDA and PPCG also tile the dimensions following the first
two parallel ones. In some cases, the additional sequential tile dimensions (that translate to
loops in the kernel code) before the parallel point loops, may increase the chances of exploiting
data reuse in the shared memory at the expense of introducing some thread synchronizations.
However, we should highlight that no analysis is performed to evaluate the effect on performance
of these extra tilings and reorderings, for the code being mapped.

In addition, both C-to-CUDA and PPCG take the tile sizes, thread block sizes and grid
sizes as user parameters. This translates to the necessity of applying extra tilings on the parallel
tile and point dimensions, to wrap those dimensions on the actual thread block and grid sizes
selected by the user. This has its advantages and drawbacks. On one hand, the user can fine
tune these parameters for a given algorithm. However, a non-expert user, without knowledge on
how the tool works, would probably need an exhaustive search to find those optimal parameters.
On the other hand, an extra degree of complexity is introduced for the final code generation
stage, as the schedule dimensions increase with these extra levels of tiling, making it sometimes
inefficient. In our opinion, the tool should select the values for these parameters, after an analysis
on the code being compiled: for the designer that decision is indeed too tedious and complex to
make. Using default values independently of the code being compiled, like Par4All does, is also
suboptimal.

The tools also differ in the data mapping stage. Par4All does not consider the exploitation
of reuse in the shared memory or the register file. All accesses are performed directly on the
global memory. For the most advanced Fermi architectures, it configures the memory hierarchy
to use as much hardware cache as possible, relying on it to exploit data reuse.

C-to-CUDA takes a different systematic approach, every array is mapped to the shared
memory. Thanks to the extra tilings on the dimensions after the parallel band, this is many times
possible. However, as no analysis was performed on the code to perform these tilings, it can
lead to invalid codes that use too much shared memory. In addition, mapping an array to shared
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memory when it does not exhibit inter-thread data reuse reduces performance, as we have the
extra accesses to the shared memory without any compensation. We will see that this translates
to a poor performance in many cases.

PPCG is, in this aspect, the most advanced tool. It performs the following analysis to decide
if a given array is to be accessed directly from the global memory or if it is to be mapped on the
shared memory or the registers file:

• If the data can be put in registers and there is reuse, then put it in registers.
• Otherwise, if the data can be put in shared memory and either there is reuse or the access

is non-coalesced, then put it in shared memory.
• Otherwise, put it in global memory.

Finally, the tools also differ in the code generation stage. Only Par4All and PPCG generate
both host and kernel codes, including all code to manage CPU-GPU transfers. In addition,
while all three tools are capable of generating parametric code, Par4All is much better at
detecting that a seemingly parametric input program is not actually parametric due to its
powerful interprocedural analysis. This has the advantage of generating simpler kernel codes,
significantly reducing the number of dynamic instructions executed by the kernel. On the other
hand, as mentioned before, the extra tilings introduced to leave the user the control over the
tiling parameters lead to very complex kernel codes, frequently inefficient. This could be solved
by providing the tools with a more sophisticated algorithm in the Mapping to the CUDA model
stage.

4.2 Related Work

As seen in Chapter 3, GPGPU programming models such as CUDA and OpenCL expose
application developers to a relatively abstract model of an SPMD many-core architecture.
However, platform-specific details remain largely exposed: it is critical to utilize the hardware
resources efficiently in order to achieve high performance.

So far, the practice of GPU programming has been dominated by heroic porting and tuning
efforts, resulting in a large number of application-specific studies. We survey different aspects
of the compilation challenge for GPUs: performance modeling and tuning considerations;
programming models; polyhedral approaches to GPU compilation; exploration of the low-level
issues related to vectorization for short-SIMD architectures such as the ARM Mali GPU; and
finally linking these issues with the complete code generation flow of the CARP project through
the concept of split compilation.

4.2.1 Performance Modeling and Tuning

Porting applications is complicated by the heterogeneity of GPU-accelerated platforms with
distributed memory, and the restrictions of the GPGPU programming models. Ryoo et al. have
shown that the optimization space for CUDA programs can be highly non-linear, and highly
challenging for model-based heuristics, performance modeling, or feedback-directed methods
[39, 38]. G-ADAPT is a compiler framework to search and predict the best configuration for
different input sizes for GPGPU programs [28]; it starts from already optimized code and aims
to adapt the code to different input sizes.
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The previous methods are not fully automatic or integrated into a GPGPU compiler. Progress
towards fully automatic performance tuning have been achieved by the Crest [43] and CHiLL
[17] projects.

Rather than targeting a low-level programming model like OpenCL or CUDA, Apricot [35]
focuses on the automatic insertion of offload constructs, targeting LEO. It rounds some of the
performance tuning difficulties by performing selective offloading at runtime. As the hardware
and tool flow mature, we believe the performance tuning aspects will become more and more
important and challenging.

4.2.2 Polyhedral Compilation

The polyhedral model has been the basis for major advances in automatic optimization and
parallelization of programs [15, 20, 21, 27, 13]. Many efforts have been invested to develop
source-to-source compilers such as PoCC [33], PLUTO [14] and CHiLL [17], which use a
polyhedral framework to perform loop transformations. Nowadays traditional compilers such as
GCC, LLVM [23] and IBM XL make use of polyhedral frameworks to compile for multicore
architectures. Progress is also underway to extend the applicability of polyhedral techniques to
dynamic, data dependent control flow [8].

With the emergence of GPUs, the polyhedral model has been applied to develop efficient
source-to-source compilers for them. Baskaran’s C-to-CUDA [5] is the first end-to-end, auto-
matic source-to-source polyhedral compiler for GPU targets. It is based on PLUTO’s algorithms
and explicitly manages the software controllable part of the memory system. However, it
remains a prototype and handles only a small set of benchmarks. Building on Baskaran’s experi-
ence, Reservoir Labs developed its own compiler based on R-Stream [26], which introduces a
more advanced algorithm to exploit the memory hierarchy. However, the paper glosses over
many of the details, and no source code is available to inspect. Gpuloc is a variation of the
algorithm proposed by Baghdadi et al. [4], which is also based on PLUTO. It uses a ranking
based technique [24] to transfer data to and from shared memory, which results in inefficient
accesses to memory that limit the overall performance. Moreover, at least one of the proposed
implementations wastes memory and limits the GPU computation power. In addition, it is not
in development anymore. Par4All [34, 3] is an open source initiative developed by the HPC
Project to unify efforts concerning compilers for parallel architectures. It supports the automatic
integrated compilation of applications for hybrid architectures including GPUs. The compiler
is not based on the polyhedral model, but uses abstract interpretation for array regions, which
also involves polyhedra; this allows Par4All to perform powerful interprocedural analysis on
the input code. CHiLL developers also extended their compiler to generate GPU code — they
introduced CUDA-CHiLL [37] during 2011. The framework does not perform an automatic
parallelization and mapping to CUDA but instead offers high-level constructs that allow a user or
search engine to perform such a transformation. PPCG (Polyhedral Parallel Code Generator) is
a relatively new tool [45]. PPCG tries to overcome previous limitations and efficiently manages
the memory system and exhibits a very robust behavior.

Unfortunately we were unable to obtain a copy of Reservoir Labs’ R-Stream [26] or CUDA-
CHILL [37] to provide a deeper assessment of these tools’ capabilities.
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4.2.3 Automatic Vectorization

Fine-grain data level parallelism is one of the most effective ways to achieve scalable per-
formance of numerical computations. It is pervasive in graphical accelerators. Automatic
vectorization for modern short-SIMD instructions has been a popular topic, with target-specific
as well as retargetable compilers for the ARM Neon, Intel AVX an SSE, IBM Altivec and
Cell SPU; all of these works had a successful impact on production compilers [47, 9, 31, 32].
Exploiting subword parallelism in modern SIMD architectures, however, suffers from several
limitations and overheads (involving alignment, redundant loads and stores, support for reduc-
tions and more) which complicate the optimization dramatically. Automatic vectorization was
also extended to handle more sophisticated control-flow restructuring including if-conversion
[41] and outer-loop vectorization [32]. Classical techniques of loop distribution and loop
interchange [46, 2, 42] can dramatically impact the profitability of vectorization.

Leading optimizing compilers recognize the importance of devising a cost model for vector-
ization, but have so far provided only partial solutions. Wu et al. conclude [47] regarding the
XL compiler that:

“Many further issues need to be investigated before we can enjoy the performance
benefit of simdization for a wide range of applications. The more important features
among them are more advanced handling of non stride-one accesses and the
ability to decide when simdization is profitable. Equally important is a better
understanding of the interaction between simdization and other optimizations in a
compiler framework.”3

Likewise, Bik stresses the importance of user hints in Intel’s ICC vectorizer profitability estima-
tion [9], to avoid vectorization slowdowns due to:

“the performance penalties of data rearrangement instructions, misaligned memory
references, failure of store-to-load forwarding, or additional overhead of run-time
optimizations to enable vectorization.”

On the other hand opportunities may be missed due to overly conservative heuristics. These
state-of-the-art vectorizing compilers incorporate a cost model to decide whether vectorization is
expected to be profitable. These models however typically apply to a single loop or basic-block,
and do not consider alternatives combined with other transformations at the loop-nest level.

Loop-nest auto-vectorization in conjunction with loop-interchange has been addressed in
prior work [1, 46, 2]. However, this was typically in the context of traditional vector machines
(such as Cray), and interchange was employed as a preprocessing enabling transformation.
Overheads related to short-SIMD architectures (such as alignment and fine-grained reuse)
or GPUs were not considered until recently. Realignment and data-reuse were considered
together with loop-unrolling [40] in the context of straight-line code vectorization. A cost
model for vectorization of accesses with non-unit strides was proposed in [31], but it does not
consider other overheads or loop transformations. The most advanced cost model for loop
transformations-enabled vectorization was proposed by Trifunovic et al. [42]. It is based on poly-
hedral compilation, capturing the main factors contributing to the profitability of vectorization
in the polyhedral representation itself.

3Simdization refers to a program transformation resulting in the use of short-vector SIMD instructions. The
access stride refers to the address increment in between two consecutive accesses to a given array.
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4.2.4 Split Compilation

Deferred compilation refers to a compilation process that is decomposed into several steps along
the “lifetime” of the program. Traditional tool chains using byte-code representations distribute
the roles among offline and online compilers. Verification and code compaction are typically
assigned to offline compilation, while target-specific optimizations are performed by online
compilation.

Split compilation reconsiders this notion: it allows a single optimization algorithm to be
split into multiple compilation steps, transferring the semantic information between different
moments of the lifetime of a program through carefully designed (byte-code) language annota-
tions. A split compilation process may run expensive analyses offline to prune the optimization
space, deferring a more educated optimization decision to the online step, when the precise
execution context is known. Many JIT compilation efforts tried to leverage the accurate infor-
mation obtained through dynamic analysis to outperform native compilers. Split compilation is
a concrete path to gather the best of both worlds.

This definition of split compilation easily extends to all steps of a program lifetime:
offline/ahead-of-time compilation, linking, installation, loading, online/run time, and even
the idle time between different runs. Each step brings additional knowledge about the run-time
environment (shared libraries, operating system, processor, input values), opening the door to
new classes of optimizations.

During the transformation from high-level language, optimizers gain increasing knowledge
about the final run-time environment, but they also gradually lose semantic information: arrays
become pointers, typed integers become 32-bit amorphous values, etc. There have been many
attempts to help compilers with information it cannot derive by itself, including pragmas in
OpenMP, or explicit multistage programming like DyC [22] or [a]C# [16] to drive partial
evaluation [19]. On the other hand, LLVM [25] is a widely used framework which demonstrated
that lifelong program analysis and transformation can be made available to arbitrary software,
and in a manner that is transparent to programmers. For deferred compilation to be effective,
high-level information must be propagated while lowering the program representation. This is
one of the purposes of PENCIL, designed in WP3.

We are not aware of any split compilation approach for automatic parallelization in general,
or for GPUs in particular. On the other hand, the approach has seen some successes in the
more specific area of automatic vectorization. Vapor SIMD is a combined static-dynamic
infrastructure for vectorization, capable of supporting diverse SIMD targets, across a wide range
of vectorizable kernels, with performance comparable to monolithic compiler vectorization
[30, 36]. It leverages the split compilation principles to facilitate the support of heterogeneous
architectures with SIMD accelerators, and the acceleration of portable code over a diverse
ecosystem of such heterogeneous architectures. The CARP project will build on this approach
in the design of the PENCIL intermediate language.

Clark et al. follow a different path, also related to split compilation, in their Liquid SIMD
method [18]. There, a static compiler auto-vectorizes the code, but then scalarizes it to emit
standard scalar instructions. The scalar patterns are later detected by the hardware, if equipped
with suitable SIMD capabilities, resurrecting vector instructions and executing them. We also
propose to use a static auto-vectorizing compiler, but instead of confining it to a scalar ISA
(thereby limiting the vectorizable patterns), we will introduce PENCIL, a richer intermediate
language to convey additional, explicit information from the static compiler to the JIT.

Bocchino and Adve proposed Vector LLVA [10], a common vector format that can be
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automatically translated to different platforms, focusing on manual programming using their
format, and demonstrating the translation of a few kernels to AltiVec, SSE, and RSVP. As in
LLVA, Intel’s Array Building Blocks [29] also introduces general vector idioms to support
manual vectorization. While these works focus on target-agnostic manual vectorization, our
work focuses on a target-agnostic auto-vectorization engine. In that sense, the two approaches
are orthogonal and complementary. Our approach is especially advantageous over the manual
approach in situations involving several alternatives for vectorizing the code, each preferable for
a different SIMD target. A programmer will pre-determine one vectorization alternative when
vectorizing the code manually, whereas using the offline auto-vectorizer, as in our approach,
the generated byte-code will convey enough information to allow the JIT to choose the right
vectorization scheme for a given SIMD platform.
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Polyhedral optimization in llvm. In First Intl. Workshop on Polyhedral Compilation
Techniques (IMPACT’11), Chamonix, France, Apr. 2011.
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5 Quantitative Cost Analysis
In this chapter we survey the current state-of-the-art in quantitative cost analysis as relevant to
WP5 of the CARP project. Section 5.1 discusses several models that estimate the performance of
parallel programs when executed on GPGPUs. These models are based on a static analysis of the
program at hand, or their control flow graph. An alternative approach is to develop an abstract
machine model of the GPU at hand, and derive probabilistic statements about execution time,
resource usage and so on. To that end probabilistic reward models can be used, and analysed
using model checking. This is surveyed in Section 5.2. A complementary view is probabilistic
program analysis where average cost analysis is possible using a semi-automated deductive
approach. This is discussed in Section 5.3, and is a more general appraoch not specifically
tailored to GPGPUs. Finally, Section 5.4 is concerned with obtaining estimations of the memory
consumption of programs. These are based on the so-called memory footprint.

5.1 Code-Based Average Cost Analysis

A cardinal goal of the CARP project is to improve efficiency of GPU programs so that they run
faster and consume less energy. Opportunities to optimize the execution time of programs are
exposed by constructing a performance model of the application. As GPU computing is still not
quite mainstream, there has been little research in this regard; nevertheless, this section reviews
the current state of the art.

Performance Models. NVIDIA ship a so-called occupancy calculator, which calculates the
ratio between the number of active warps to the maximum number of warps on a multiprocessor
of the GPU. The calculation is based on the parameters of a GPU kernel, in particular the thread
block size, the size of shared memory, and the number of registers. As the ratio tends towards
1.0, it is claimed better performance can be expected because warps can be scheduled while
long-latency global memory requests of other warps are pending.

However, as Hong and Kim [20] elucidated, the correlation between high occupancy and
fast execution time is not that straightforward. They instead propose a more refined model of
GPU kernel execution which effectively considers how warps are scheduled on a particular
multiprocessor, analogously to how a pipeline model of a CPU is constructed for instruction
throughput. The effect of barrier synchronization and coalesced/uncoalesced memory accesses
on warp progress are also considered. These abstract models of the GPU produce a system
of equations from which an execution time is yielded for a specific GPU configuration. For a
number of micro-benchmarks, their results show that the model predicts the actual execution
time with relative accuracy.

The original framework nevertheless had a number of limitations, which have been remedied
to some extent in recent work [30]. First, since older-generation GPUs did not incorporate caches,
there were no provisions for cache effects on timing. As this trend is over (e.g. NVIDIA’s Fermi
has a hardware-managed cache), a very simple extension is proposed. But a major stumbling
block is that details of the cache configuration (e.g. cache line size) and its operation (e.g. cache
line replacement policy) are normally proprietary, without which it is impossible to model
with any degree of accuracy. Second, some parts of the analysis now operate at a lower level,
namely with the binary rather than an intermediate representation (PTX, the virtual instruction
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set architecture of NVIDIA). The rationale is that, because there is a final optimization stage
while assembling PTX into binary, the true measure of performance comes from analyzing that
which runs on the bare metal.

Baghsorkhi et al. [5] have also recently proposed a performance model for GPU code that is
based on an extension of a program’s control flow graph called the Work Flow Graph (WFG);
nodes represent instructions while edges represent memory accesses with high latencies. This is
a more detailed model in that it is able to handle diverging control flow between threads and
memory bank conflicts (this is where there are multiple requests for data from the same memory
bank, leading to a serialization of memory accesses). With respect to several relatively complex
GPU kernels, such as FFT and prefix sum, their predictions are in close proximity to the actual
execution times. The biggest weakness is that the model is constructed in the early phases of
compilation, before the full array of optimizations has been applied.

Nugteren and Corporaal [28] present the ‘boat hull’ model based on the ‘roofline’ model [31]
(so called because of the shape of the region where a program’s performance is expected to lie in).
The roofline model estimates performance by assuming that a program is either memory-bound
or compute-bound, depending on its operational intensity (measured in operations per byte) and
available hardware. The performance range given by the roofline model can be very wide. For
example, if a program is memory bound, the roof of model corresponds to the most favourable
memory access pattern (typically sequential), while the ceiling to the most unfavourable one
(e.g. random), the difference in performance between which may be an order of magnitude on
some older GPUs. The boat hull model predicts performance within a tighter range by taking
into account the memory access pattern of a particular algorithm class. For image processing
and computer vision applications, the predicted performance is within 8% of the measured
performance on different CPUs and GPUs.

Power Models. Hong and Kim [21] proposed a refined model that predicts both power and
performance for a given GPU program (kernel). The total power consumption is comprised of
the idle power (which is consumed even when no kernel is running), and the runtime power
(which is consumed by running the given kernel). The runtime power is comprised of the
power consumed by off-chip memory, and by architectural components of a GPU core such as
various functional units and on-chip memories. An architectural component is characterised
by the maximum power which is obtained empirically by running synthetic microbenchmarks
stressing the component. A kernel is characterised by how often it accesses an architectural
component per unit of time (access rate). The model further considers the impact of the runtime
power on the temperature, and of the temperature on the static power. To achieve reasonable
accuracy (with the geometric mean of the prediction error of 2.5% for the microbenchmarks
used for training and 9% for simple kernels), the model is fairly specific to NVIDIA’s G200
architecture (e.g. considers sharing of resources between streaming multiprocessors, warp-based
execution, segmented memory organisation, etc.). Kernels are characterised only by the rates of
accessing architectural components, without taking into consideration effects of e.g. control-flow
divergence and locality.

5.2 Quantitative Model Checking

Conventional model checking as introduced in the 1980’s by Clarke, Emerson, Queille and
Sifakis [14, 29] is a fully automated technique to verify properties of interest of the system under
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consideration. However, most often real-world systems tend to involve stochastic and timed
behavior. For example, hardware components inside a system may fail with a given probability
or it might be of crucial interest that the system satisfies certain timing constraints. As the
models for qualitative model checking abstract from numerical phenomena, there is virtually no
way of analyzing quantitative properties.

Quantitative model checking extends conventional model checking in a way that enables
formal analysis of models involving quantitative aspects. Besides the aforementioned correctness
analysis this also includes performance and dependability – often combined as performability –
measures such as the time needed to reach a given goal [18]. Quantitative model checking is a
push-button technique which is typically restricted to finite state models. This does, however,
not mean that it is not possible to model real-valued phenomena. On the contrary: there
exist formalisms that support real-valued quantities such as time despite having a finite state
representation.

We will now focus on real-time models, because performance analysis of GPGPU programs
is one of the primary goals of the CARP project.

Quantitative Model Classes. There exist various models to formally capture timed or stochas-
tic behavior.

Alur and Dill proposed Timed Automata (TA) [3] as a means to model the behavior of
real-time systems over time. Formally, TA are a finite-state representation of an underlying
infinite transition system. The state space of the timed automaton is given by a set of locations in
which time can pass unless the invariant of the state is violated. The time that passed increases
the values of the finitely many clocks associated with the automaton. Transitions between
locations are guarded by conditions over these clocks and may thus only be taken when all
conditions are met. Upon taking a transition, it may reset any number of clocks before entering
the target state.

While timed automata elegantly reflect real-time behavior, choices during the execution of
the original system can only be modeled by non-determinism. In the absence of information
about these choices that may be appropriate, but otherwise this represents a rather harsh
abstraction. Drawing inspiration from Markov Decision Processes (MDPs), Kwiatkowska et
al. [26] proposed Probabilistic Timed Automata (PTA), which allow for specifying discrete
probability distributions over transitions. MDPs are an extension of Discrete-Time Markov
Chains (DTMCs) in that they are not restricted to one probability distribution over successor
states in each state, but to a non-deterministic choice over probability distributions. That means
that MDPs themselves can model non-determinism as well as probabilistic behavior, but lack
the support for continuous phenomena.

Dropping the feature of non-determinism, DTMCs can be extended to Continuous-Time
Markov Chains (CTMCs). Instead of probabilities each transition between states in a CTMC
is equipped with a so-called rate. The information these numbers give is twofold. First,
they indicate the likelihood of each transition being taken in relation to the other “competing”
transitions and secondly, they give rise to a probability distribution over the time the current
execution stays in the source state. More precisely, the sojourn time in a certain state is given
by an exponential distribution with the mean value equal to the sum of outgoing rates. Put
differently, CTMCs are able to capture time as a continuous quantity as well as the probabilistic
behavior of the modeled system. Additionally, as the rates are the mean value of a distribution,
uncertainties in the timing behavior of the system can be elegantly reflected.

However, CTMCs are not suitable to model non-deterministic behavior, as their behavior
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is of purely stochastic nature. That is, using rates to “emulate” non-determinism corresponds
to making assumptions about the scheduling of actions, which is not suitable in many cases.
To cope with this, Hermanns proposed Interactive Markov Chains (IMCs) [19]. This model
class extends CTMCs by interactive states. In these states, an evolution of the system non-
deterministically chooses one of the possible successor states and moves there.

Often, not only the stochastic and timed-behavior of a process is of interest, but also an
additional different, yet related quantitative measure. For example, the energy-consumption
until a certain condition holds or the expected number of rounds a protocol has to be run in order
to be successful. This can be reflected in the discussed Markov models by attaching rewards to
states. The reward gained in a state during an execution is equal to the reward value of the state
multiplied by the time that is spent in that state. Quantitative model checking could now for
instance assert that the average reward gained during executions leading to a particular target
state group is lower than some given bound.

Measures-of-Interest. Probably the most prominent measure of interest is time-bounded
reachability. Under this category fall, e.g., properties of the form “what is the probability that
the system reaches a certain configuration within t time units”. For instance, for a model of a
network configuration protocol (e.g. the IPv4 zeroconf protocol), one might ask how likely it is
that the protocol finds a suitable configuration in, say, 2 seconds.

Another property of interest is the long-run average. Consider a workstation cluster, which
serves queries from a queue. In order to guarantee that enough users can be served, it could be
of crucial importance that — in the long run — the system is available for requests at least 80%
of the time.

Using the aforementioned reward structures, even more complicated measures can be
computed. As an example, reconsider the network protocol example. Assuming the model
attaches rewards to its states corresponding to the energy consumption at a given time, not only
can we compute the likelihood that the protocol finds a suitable configuration without using
more energy than a certain bound, but we can even compute the expected amount of energy
needed spent on finding such a configuration.

If a system incorporates non-determinism, the measures of interest can take several values
depending on a concrete resolution of non-determinism. In this case, quantitative model checking
approaches the solution conservatively. That is, it computes extremal values for the best and
the worst resolution of non-determinism, respectively. Consequently, the measure of interest
will lie in the derived interval for every possible resolution of non-determinism. If the resulting
interval is too wide, this is rather a problem of the model as for the specified model there exist
resolutions of non-determinism that achieve the extremal values. If that behavior, however,
cannot be observed in the real system, the model has to be refined.

In practice, all measures described here are formulated succinctly using temporal logics like
TCTL [2], PCTL [8] and CSL [4] and according reward extensions. Furthermore, this has the
advantage of unambiguity, as it leaves no room for interpretation of the semantics of a property.

Brief Description of Main Model Checking Algorithms. For the TA-based models, further
analysis is typically preceded by the construction of a region graph. This graph consists of a
finite number of clock regions, each of which represent a set of clock valuations that behave
identically with respect to the property to verify. As this graph is potententially intractably large,
the verification of certain properties can be done by using the – possibly smaller – zone graph.
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[1] This preprocessing step is then followed by either a standard qualitative model checking
process (for TA) or a quantitative analysis for PTA.

At the heart of quantitative model checking lie numerical methods to compute the measure
of interest. For purely probabilistic models the solution of a set of linear equations generally
suffices. [8] Usually, the transition probabilities are stored in a representation of a matrix, which
– after some modifications – reflects the linear equations to solve. Although the exact solution
of this system can be obtained in polynomial time in the number of states of the model, it is
infeasible already for moderately sized models due to enormous state space sizes. In practice,
the use of numerical iterative solution techniques proved to be feasible, especially considering
the advanced data structures used for the storage of the transition probability matrix such as
variants of Binary Decision Diagrams (BDDs) [24].

However, for continuous-time models such as CTMCs an analysis may become more
intricate. While non-timed properties may be directly verified over the embedded DTMC, the
solution for timed properties is given by a set of integral equations. This can – at the cost of
being computationally expensive – be numerically approximated. Alternatively, Baier et al.
proposed a modification of the CTMC such that the verification of the given property boils down
to transient analysis of the CTMC [7].

Including non-determinism in the model generally makes it harder, as it is not clear before-
hand which resolutions of non-determinism will yield the extremal values. Instead of finding the
solution to this problem by an iterative technique as before, the problem may be formulated as
an Linear Programming problem and solved via e.g., a Simplex-based method or value iteration.

If the CTMC model involves rewards, the solution procedure can become even more difficult
and involve further steps such as discretisation [18, 6].

Available Tool Support. There exist several stochastic model checking tools, out of which
PRISM [25], MRMC [23] and LIQUOR [13] are the most prominent ones. PRISM1 is arguably
by far the most widely used. It supports a variety of modeling formalisms as well as additional
optimization techniques. Among the supported model classes are DTMCs, MDPs, CTMCs
as well as PTAs and the appropriate (branching) temporal logics. It offers three different
model checking engines building on symbolic and sparse data structures and the corresponding
techniques to solve the problem at hand. Besides, it features a high-level modeling language,
making it easy to model structured systems. While being particularly feature-rich, PRISM,
however, is not capable of analyzing IMCs. Based on ideas to reduce the analysis of an IMC to
a variation of a problem over a simpler model [15], a prototype of an Interactive Markov Chain
Analyzer (IMCA2) is currently under development for which first experiments show encouraging
results.

5.3 Probabilistic Program Analysis

Probabilistic programs can be used as a model of real software where we abstract from concrete
implementation details and instead quantify the likelihood that some computation is performed
or not. This allows for average case estimations regarding runtime or power consumption.

Formally, probabilistic programs are imperative, sequential programs enriched with a random
choice statement. This means, there are assignments, loops, conditional and non-deterministic

1http://www.prismmodelchecker.org/
2http://www-i2.informatik.rwth-aachen.de/imca/
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choices. In addition, there is a probabilistic choice operator that allows to choose between
two subprograms probabilistically with some probability p and 1− p respectively [27]. Such
programs can be categorized with respect to the data and expressions that they are allowed to
work with. For example, the variables of a program might be only Boolean (or more generally
finite domain variables) or they might be real-valued (or infinite domain in general). The guards
of loops and branching statements as well as the right-hand side of assignments is composed of
arithmetic expressions. These expressions can be restricted to be only linear, for example, or
they can be generalized to be polynomial. Finally, the probability parameter of probabilistic
choice can be a fixed, real number in [0,1] or some fixed, symbolic parameter, e.g. p, or an
expression over the program variables like 1

x which is assumed to evaluate to a number in [0,1]
at runtime.

If we restrict the programs to finite domain variables, then probabilistic model checkers
such as PRISM [25], MRMC [23] and LIQUOR [13] can effectively analyse various properties
of such programs. However they require that probabilities are given explicitly. PARAM [16]
can work also with programs where probabilities are fixed but unknown constants. If integer
variables are allowed in models, the state space can become infinite. Then, again for explicit
probabilities, the tool PASS [17] can compute reachability probabilities.

There is a need to consider more general probabilistic programs than those treated by the
automated tools above. Hence different approaches are being developed. One is to reason about
probabilistic programs not in an operational way but in terms of expectation transformers [27].
This allows to represent the programs and their properties in a finite way regardless of the
underlying state-space size or the involved expressions.

An expectation is function that maps a program state, i.e. the evaluation of the variables,
to a real value. Expectations are used in the same way as a predicates are used as program
annotations in Dijkstra’s wp-calculus: Given a program we relate an annotation at the end of the
program, called a post-expectation, to an annotation at the beginning, called pre-expectation in
the following way: the post-expectation is a random variable that is evaluated at the end of the
program, the pre-expectation is the expectation3 of this random variable with respect to to the
distribution that is generated by the execution of the probabilistic program in between.

Using expectations we can express what is the probability of a certain event, say “at the end
of the program, the value of x is between 4 and 4.5” or we can express what is the expected
number of, say iterations that a loop does before it terminates.

From a theoretical point of view this is a very powerful vehicle that allows to analyze
complex sequential probabilistic programs. However this expressivity comes at a price. Only
for (trivial) i.e. loop-free programs, there is an easy way to compute a pre-expectation for every
post-expectation. For loops the pre-expectation is defined as the solution of a fix-point equation
over expectations. So there is no hope to find a fully automated tool that would perform the
analysis of such programs in general.

However, as for non-probabilistic programs, invariants are used to find a lower bound
on the aforementioned fix-points. The problem of discovering such invariants spawned a
research branch on its own that deals with automated invariant generation. For non-probabilistic
programs this research is already going on for many years while invariant generation for
probabilistic programs is a new topic. One of the first approaches is described in [22]. A
first prototype tool called PRINSYS (PRobabilistic INvariant SYnthesiS) is currently being

3Actually, due to non-determinism the program generates a set of distributions and we take the least favorable
one, i.e. the one that will minimize the expectation.
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developed4. Currently, a linear invariant for linear probabilistic programs with one loop can
be generated semi-automatically. This works as follows: a user enters a template, that is a
linear expectation with unknown parameters and PRINSYS automatically tells the user which
evaluations of the template parameters yield an invariant expectation. The next immediate
challenge is to treat templates that are non-linear.

5.4 Determining Memory Footprints

The memory footprint of a piece of code is the part of computer memory accessed by that code
while performing its operations. The notion of footprint is central in local reasoning. Separation
logic provides mechanisms whereby a specification can concentrate on only the cells accessed by
a program, while allowing the specification to be used in wider contexts via a special rule called
the frame rule (see also Chapter 6). In the context of automatic verification and program analysis
this suggests, when considering a code fragment in isolation, to try to discover assertions that
describe the footprint, rather than the entire global state of the system. This is the key idea that
makes analysis based on separation logic viable: the entire global state can be enormous, or
even unknown, where one can use much smaller assertions to talk about the footprint.

There are two main articles in the literature which automatically determine memory foot-
prints.

Intra-Procedural Case. A method for determining memory footprint in the intra-procedural
case has been developed in [10]. This method, called footprint analysis, defines a shape analysis
that is able to discover preconditions (as well as postconditions) and builds on the work on shape
analysis with separation logic.

Footprint analysis symbolically runs the program forwards, collecting heap information
for each node of the control flow graph in the usual way of shape analysis. However, when a
dereference to a potentially-dangling pointer is encountered, that pointer is added into a special
“footprint assertion”, which describes the cells needed for the program to run safely. When
starting the analysis with the empty heap in the initial footprint assertion, then the analysis will
find the collection of safe states. These are the states that do not lead to a dereference of a
dangling pointer or other memory fault.

Bi-abductive Inference. The intra-procedural footprint analysis has been extended to the
general case in [11]. This new analysis is based on a new notion called bi-abduction which
combines the idea of abductive inference and frame inference.

When reasoning about the heap, abductive inference discovers the memory needed to execute
a command safely. It can be defined as follows: given (separation logic) formula H ′ representing
a portion of memory needed to execute a command safely, and H representing the memory
available before executing the command, compute a formula A such that H ∗A ` H ′ holds. In
other words, A is the missing part of memory which when combined with the available memory
H is enough to represents the needed memory H ′.

Frame inference is a dual notion. It is defined as: given (separation logic) formulas H and
H ′ compute a formula F such that H ` H ′ ∗F holds. In practice, frame inference compute the
part of memory that is not involved in the execution of a command. An algorithm for inferring
frames was introduced in [9].

4http://www-i2.informatik.rwth-aachen.de/prinsys/
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Bi-abductive inference is then defined as: given (separation logic) formulas H and H ′

compute a frame F and an anti-frame A such that H ∗A ` H ′ ∗F holds. Bi-abduction provides a
way to automatically compute (approximations of) footprints of commands and preconditions
of procedures. In particular, bi-abduction is the main ingredient allowing for an analysis method
where pre/post specs of procedures are inferred independently of their context. This has opened
up a way to design compositional shape analyses for sequential [11], and recently concurrent
programs [12]. Compositional analysis has a great ability to scale since procedures are analyzed
in isolation.
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6 Static Verification
In this chapter we give an overview the current state-of-the-art in static verification as relevant
to WP6 of the CARP project. WP6 focuses on static verification of accelerator applications, in-
cluding verification of code written using the GPU programming models discussed in Chapter 3,
and techniques for verifying memory safety of accelerator programs. The work package also
has a focus on the use of dynamic instrumentation to expose bugs that have been detected using
verification; we are aware of no prior work on this topic so do not discuss it further here.

We begin with an overview of the current state-of-the-art in the static verification of acceler-
ator programs (Section 6.1). As will be apparent from this overview, research in this particular
sub-domain of static verification is currently in its infancy. In particular, no attempts have
been made to adapt techniques for the analysis of pointer manipulation (e.g., separation logic,
shape analysis, and hyperedge replacement grammars), or more advanced techniques for the
analysis of concurrent programs based on Hoare logic [69], separation logic [109] and model
checking [32], so that they can be applied to the verification of accelerated software.

Following the overview of the state-of-the-art in static verification of accelerator program-
ming, we describe in turn the state-of-the-art in techniques for analysis of pointer-manipulating
programs (Section 6.2) and multi-threaded concurrent programs (Section 6.3).

6.1 Static Verification of Accelerator Programs

The state-of-the-art in verification of accelerator programming is necessarily limited in scope
due to its relatively recent introduction. All techniques proposed so far are geared towards
the analysis of either CUDA or OpenCL kernels (see Section 3.4.1 for a detailed overview of
each of these programming models), or programs that execute on the Cell Broadband Engine
processor. The focus is on adapting well-understood techniques for sequential program analysis
to the setting of accelerator programs.

6.1.1 Formal semantics for GPU programming models

Before we discuss the verification efforts for GPGPUs, it is important to mention that static
verification depends on a formal semantic, i.e., a mathematical description of the execution of a
program.

Formal semantics for programming models in the vein of CUDA and OpenCL have been
studied. Semantics in which the threads can be arbitrarily interleaved are presented in [90] and
[87], the differences between the two are minor, although the former also specializes this to
a semantics in which all threads run in lock-step. Pure lock-step semantics are presented in
[63] and [62]. The former defines a semantics for a high-level language in which accelerator
programs may be written; the latter defines a semantics for the byte-code that may be run on an
NVIDIA GPU.

We note that it is important for any new programming language to have strong semantic
foundations, and that the CARP work will involve specifying formal semantics for the new
PENCIL intermediate language which we will design.
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6.1.2 Verification of GPGPU Programs

We now categorize the formal verification efforts attempted to date according to the verifi-
cation technique adopted. The relevant techniques are: pairwise verification of threads and
symbolic execution. For completeness, and because Task 6.4 of CARP is on the integration of
static verification with dynamic instrumentation, we also discuss recent dynamic verification
approaches.

Pairwise Verification of Threads. Pairwise verification of threads has as its starting point the
observation that any data race in a GPGPU program will be due to two threads accessing the same
memory location without proper synchronization, where at least one of the threads performs a
write. The observation was first made by Li and Gopalakrishnan and their co-workers [88]. As
they report, considering threads in a pairwise fashion allows them to scale to programs that were
beyond the capabilities of their previous bounded model checking approach [89] (see below).

Pairwise verification has been adopted by Li and Gopalakrishnan [88, 94] and by Tripakis
et al. [119], and is the basis of current work on GPU kernel verification by the CARP team at
Imperial College London. Besides considering threads in a pairwise fashion, another crucial
observation made by these approaches is that in the case of data races it suffices to consider
program executions between barriers, which are the main means of synchronization in GPGPU
programming. This considerably reduces the complexity the logical formulas that need to be
checked, allowing for the verification of more complex programs.

The work of Tripakis et al. [119] only considers data races and is limited to verifying
absence of races only in programs where all loops have fixed bounds. They, however, claim to
be working on an extension of their method which mitigates the loop bound limitation.

The work of Li and Gopalakrishnan [88], implemented in their tool PUG, is more advanced
and allows for verification of programs with unknown loop bounds, using techniques for
automatic loop invariant inference. Their technique also allows loop invariants to be specified
manually for cases where inference fails. The technique exploits the fact that CUDA kernels
cannot exhibit recursion, and inlines all procedure calls. This means that discovery of procedure
pre- and post-conditions is not necessary. Although the technique is necessarily incomplete, Li
and Gopalakrishnan claim that the technique can be highly successful in the case of GPGPU
programs, as most loops in these programs follow certain fixed patterns.

As well as checking for data races, Li and Gopalakrishnan allow for checking of arbitrary
functional properties by means of adding additional assertions to programs. In their later
work [94], they also consider performance problems in GPGPU programs. In particular, so-
called bank conflicts and memory coalescing errors are considered. In the case of bank conflicts,
multiple threads at the same time try to access a memory bank shared between these threads,
which requires the serialization of these accesses, reducing performance. In the case of memory
coalescing errors, multiple reads or writes to memory by different threads to the global memory
of the GPGPU cannot be combined into one memory operation, also reducing performance.

Our current work on GPU kernel verification furthers the work of Li and Gopalakrishnan
in several ways. We have devised a precise technique for checking the correctness of barrier
synchronization (see Section 3.2.8) based on predicated execution of GPU threads. We are de-
signing a technique for loop invariant inference using the Houdini algorithm [55], by identifying
common GPU programming idioms and capturing the correctness criteria for these idioms in
invariant generation rules. Our techniques are implemented in a prototype tool, GPUVerify,
which builds on the Boogie verification system [5].
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Bounded Model Checking. In bounded model checking, the loops in a program are unrolled
to a certain bound. Next, a logical formula is constructed for the program and a property the
program needs to satisfy, where the formula only considers the unrolled part of the loop. Finally,
automated theorem proving is applied, as in the case of contract-based verification. Remark that
this method is necessarily incomplete, as a counterexample to a property may only be found by
unrolling the loop further than the chosen bound.

A bounded model checking approach to GPGPU program verification is described by Li and
Gopalakrishnan and their co-workers [89], i.e., the authors of PUG. As in the case of PUG, the
focus is on data races and it is remarked that the method can be extended to arbitrary program
properties by adding assertions to the programs being verified. However, unlike PUG and due to
this work actually pre-dating PUG, no use is made of the observation that it suffices to consider
only two threads when trying to detect data races. Instead, so-called partial order reduction is
used to reduce the number of thread schedules that need to be considered, which, as reported in
[88] is less effective than restricting attention to two threads.

Symbolic Execution. In symbolic execution, a program is actually executed. However, part
of the program is kept in symbolic form. For each path through the program that can be taken
constraints on the symbolic data are generated. These constraints can be used to generate
concrete test cases (ensuring high code coverage). Moreover, the constraints on two programs
that are claimed to be equivalent can be generated and compared to actually prove equivalence.

The route of proving equivalence of two programs is taken by Collingbourne et al. with
their tool KLEE-CL [36]. KLEE-CL uses symbolic execution to establish the equivalence
between a plain C or C++ version of a program and a OpenCL version of the same program. As
reported in [36], the technique is very effective for finding differences between plain programs
and GPGPU implementations of the same programs.

Li and Gopalakrishnan and their co-workers [90] use their tool GKLEE to generate test
cases with high code-coverage. In addition, during symbolic execution GKLEE attempts to
detect memory races and bank conflicts (see above). Moreover, GKLEE also detects what is
sometimes called barrier divergence, which means that some barrier synchronization points in
GPGPU program are not hit by all threads; something which is not allowed on current GPGPU
architectures. To limit the number of execution paths that are taken, GKLEE depends on the
lock-step semantics of threads, instead of using a more general interleaving semantics. The
lock-steps semantics suffices, as the current GPGPU hardware is also based on this execution
model.

Dynamic Verification. In dynamic verification, instrumentation code is added to programs
to be able to observe certain unwanted program behavior, e.g., data races can be detected by
adding code that records the memory locations accessed by different threads. The instrumented
programs are run on concrete inputs to see if the unwanted program behavior occurs in practice.
Note that adding instrumentation code is likely to reduce the performance of a programs and,
hence, should be kept to a minimum to ensure reasonable execution times.

Boyer et al. [23] use code instrumentation to detect data races and bank conflicts in GPGPU
code. However, they do no attempt to keep the instrumentation to minimum, which results in
significant slowdowns.

Improving on the work by Boyer et al., Zheng et al. [127] use static analysis techniques to
reduce the instrumentation to a minimum in the case of data races. Moreover, they introduce
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special data structures that reduce the overhead of the instrumentation. In this way, a significant
performance gain is obtained compared to the work of Boyer et al.

Finally, although strictly speaking a static verification technique, Leung et al. [87] use
dynamic verification of a single program execution to establish that this execution is race free.
Moreover, using static analysis of the GPGPU program they try to establish that the memory
accesses in the program do not depend on the concrete data that was used as input. Combining
both analyses they have a theorem that states that if the execution was race free and memory
accesses were independent of the concrete inputs, then the program is race free on every input.

The technique of Leung et al. is highly effective to show the race freedom of a large number
of GPGPU programs. However, there seems to be no obvious way to extend the method to
programs where memory accesses do depend on the data that is used as input.

6.1.3 Verification of Cell Programs

The Cell Broadband Engine processor [72] is a heterogeneous multicore architecture (see
Section 3.1.1) consisting of a host processor, the power processor element (PPE) and eight
accelerator processors, the synergistic processor elements (SPEs). The system has segmented
memory (see Section 3.2.5): each SPE has its own portion of scratch-pad memory which can be
accessed without contention. A thread running on an SPE must explicitly copy data to/from
main memory from/to its scratch-pad memory using direct memory access (DMA) operations.
In order to hide latency, an SPE thread can launch many DMA operations simultaneously,
and must ensure that concurrent DMA operations do not race: if two DMA operations are
simultaneously pending, either issued by the same or different threads, and if these operations
access overlapping regions of memory, then neither operation can modify this overlapping
region of memory, otherwise undefined results will be computed.

A static technique for detecting races between DMA operations issued by a single SPE
thread has been proposed, based on bounded model checking [48, 49]. In this approach, DMA
operations are tracked by instrumentation variables, and assertions are added to the program
under analysis such that a failed assertion indicates a DMA race. This work also shows that the
k-induction method [118, 46] can be used to prove absence of DMA races in programs that use
multi-buffering as a latency hiding technique. This DMA race analysis technique is implemented
in the SCRATCH tool [50], which builds on the bounded model checker CBMC [33].

Another technique for static verification of programs that use DMA operations, based on
separation logic [20, 19], is discussed in Section 6.3.1.

6.2 Static Verification of Pointer Manipulating Programs

Automatic software verification has seen an upsurge of interest in recent years. This is exempli-
fied by tools such as SLAM [4] and ASTRÉE [17], which have been used to verify properties
of special classes of real-world software, e.g., device drivers and avionics code. Crucial in
this reinvigoration of automatic software verification has been the employment of methods
from static program analysis which have the advantage to lessen annotation burden (e.g., by
automatically inferring loop invariants and procedure summaries).

Hoare logic [69] has been the traditional basis for program verification, where one typically
wishes to show that for any possible input in some unbounded domain, the program behaves in
a certain way. Several tools based on Hoare logic exist and have been successfully applied to
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sequential programs written in realistic programming languages (e.g., ESC/Java2 [35], Spec# [7],
and Krakatoa [97]).

Pointer Manipulation. Advances in automatic verification have happened also for pointer
manipulating programs. This has traditionally been a persistent trouble area that has hindered
verification-oriented program analysis to be applied to a wider range of real software. Traditional
shallow pointer analyses, which infer dereferencing information of bounded length, often do
not give enough information for verification purposes. For example, for automatically proving
that a device driver manipulating a collection of nested cyclic linked lists, does not dereference
null or a dangling pointer, the analysis technique needs to be able to look unboundedly deep
into the heap. Various software verification approaches have been tailored or extended to
pointer programs such as extensions of Hoare-style reasoning using e.g., separation logic [109],
abstract reachability analysis using regular model checking [22], shape analysis [114, 115], and
dedicated extensions of temporal logic approaches [41]. However, until very recently, automatic
verification of pointer programs could only be applied to tiny programs; for evidence of this in
the case of shape analysis see, e.g., [25, 111, 112, 96, 40, 21].

6.2.1 Shape Analysis and Separation Logic

Shape analyses [114, 115] aim to be accurate in the presence of deep-heap updates — they go
beyond aliasing or points-to relationships to infer properties such as whether a variable points
to a cyclic or acyclic linked list. Separation logic [109] is an extension of Hoare Logic for
reasoning about programs that access and mutate data held in computer memory. It is based on
a special conjunction operation ∗ called the separating conjunction and on program-proof rules
that exploit separation to provide modular reasoning about programs. Thanks to the separation
conjunction, separation logic supports inductive definitions providing natural descriptions of
mutable data structures and frame axioms, which state what does not change. Specifying what
does not change is essential to prove many programs involving pointer manipulations. These
features of separation logic together enable specifications and proofs for pointer programs that
are dramatically simpler than was possible previously [13, 105, 109, 43].

Separation logic has been combined with shape analysis to obtain scalable automatic
verification techniques. Prominently among these is Space Invader/Abductor [42, 12, 125, 27],
an automatic shape analysis tool based on separation logic aiming at the verification of real
software. The driving forces behind Space Invader/Abductor are: On the one hand, the idea
of local reasoning in separation logic [75] that allows specifications to concentrate on the
footprint: the cells touched by a command. On the other hand, there is the notion of bi-abductive
inference [27] (see also Chapter 5) which allow the verification to be compositional and therefore
to scale to very large programs (millions of lines of code).

A number of other verification systems for separation logic have been developed (some of
which take some inspiration from Space Invader), varying from the level of automation to the
kind of programming features they handle [79, 52, 103, 15, 57, 14, 95, 30, 122, 43].

6.2.2 Hyperedge Replacement Grammars

The verification method for pointer-manipulating programs based on hyperedge replacement
grammars (HRGs) introduced in [110, 65, 81] aims at abstracting the (possibly) infinite state
space arising during the analysis of heap-manipulating programs into a finite one. It employs an
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intuitive graph-based model of heap structures where vertices can be interpreted as heap objects
while labeled edges (i.e., pairs of vertices) visualize selector references between the objects.
Additionally, a mapping of program variables to vertices is required to link the program to the
heap. Thus pointer-manipulating operations correspond to graph transformations.

For the purpose of obtaining a finite state space, hyperedge replacement grammars (HRGs)
[51] are utilized to shrink and expand parts of the heap. The production rules of the HRGs
reflect the data structures that occur in the program, such as lists, trees, lists of trees, etc. The
key idea is to employ hyperedges to represent abstract parts of a heap, e.g., a singly-linked list
of arbitrary length. Thus, heap representations are partially concrete and partially abstract. To
guarantee soundness of the abstraction approach, additional requirements are to be fulfilled
by the HRGs. We are able to list these requirements and show that there exist transformation
procedures that output suitable HRGs only [81].

The basic approach has been adapted towards Java programs and implemented in the
abstraction framework Juggrnaut [64] featuring e.g. object types, null pointers, method stacks
and local as well as static variables. The tool has been successfully applied to various case
studies including the Lindstrom variant [91] of the Deutsch-Schorr-Waite algorithm [117],
which is considered a benchmark for pointer program analysis [93, 22].

6.2.3 A Brief Comparison

We briefly compare techniques for analyzing pointer programs based, on the one hand, on
separation Logic and shape Analysis [115] and, on the other hand, on HRGs.

As mentioned earlier, separation logic is an extension of Hoare logic with inductive defini-
tions to describe the shape of heap parts. It is classically employed in the form of Hoare-style
verification using annotations of programs where decidability of entailment is essential. Whereas
this problem is undecidable in general, decidable sub-logics for lists and trees have been de-
veloped in [13, 14]. There are several separation-logic tools such as Space Invader [125, 27]
(supporting linear data structures), Smallfoot [14] (aiming at (doubly) linked lists and trees),
jStar [43], and Verifast [76] (allowing general user defined predicates and data structures). The
main advantage of these tools is their scalability [125].

The HRG-method is based on exhaustive (abstract) state space exploration and can support a
rich set of user-defined data structures. As pointed out by Dodds and Plump in [44], there exists
a strong correspondence between inductive definitions in separation logic and the nonterminals
that are used in the abstract heap representations based on graphs. This also means it would
be interesting to investigate if this relationship can be exploited e.g., to allow for usage of user-
defined data structures given by HRGs in separation logic contexts while preserving decidability
of entailment.

Shape analysis is based upon three-valued logic, where the value “don’t care” is used to deal
with loss of information caused by abstraction. Heaps are described by shape graphs, where
nodes, indistinguishable by properties expressed as predicated in the logic, are summarized.
Typical predicates are shape properties like reachability, cycle membership, etc. Most of these
are derivable from the heap graph representation [38] and are implicitly provided in the HRG
state space exploration. Whereas in shape analysis all nodes satisfying the same predicates are
summarized, in the HRG approach nodes that constitute a well-defined (fragment of a) data
structure are collapsed.
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6.3 Static Verification of Concurrent Programs

We give an overview of techniques used to statically verify concurrent programs. We discuss
both techniques based on Hoare logic and model checking techniques.

6.3.1 Methods Based on Hoare Logic

This section first of all considers techniques based directly on Hoare logic [69]. This is followed
by an introduction to concurrent separation logic, including a discussion of permissions. Finally,
we consider interval temporal logic and some approaches to the verification of concurrent data
structures. We expect that these techniques will also form the basis for the concurrency-related
aspects of the verification of accelerator programs.

Extensions Based on Hoare Logic. Owicky and Gries present a language for parallel pro-
gramming with a primitive construct for synchronization and mutual exclusion [106]. They
develop a method for verifying concurrent programs by proving non-interference between
parallel executing processes. Assertions about processes have to be proven invariant under
parallel execution of other processes; this is the notion of interference freedom. One major
drawback of the Owicki-Gries approach is its non-compositionality: Changes in one component
can effect the proofs of all other parallel components. In addition, one has to prove for all
individual atomic program steps that there is no interference, quickly resulting in an enormous
blow-up in the number of proof obligations.

To tackle the compositionality problem, Jones [82] developed the Rely-Guarantee method.
This method adds rely- and-guarantee-conditions to programs that run in an interfering environ-
ment. The Rely-Guarantee method is a very good choice for modeling concurrent programs
with interference, but the specifications are usually very complex because they describe the
entire global state.

Ábrahám et al. [1, 2] present an assertion proof system for multi-threaded Java, extending
the method of Owicki and Gries. They reason about Java-specific concurrency issues like
synchronous message passing, dynamic thread creation, shared-variable concurrency via instance
variables, and coordination via re-entrant synchronization monitors.

Jacobs et al. [77, 80, 78] propose a programming model that prevents data races and
deadlocks and supports local reasoning in the presence of object aliasing and concurrency. They
implement a verifier for programs developed according to their model in a custom version of the
Spec# programming system.

Concurrent Separation Logic. Both the Owicki-Gries and Rely-Guarantee method can result
in very complex specifications as a result of describing global states. Resource separation has
been recognized as a solution to control the complexity of process interactions and reducing the
possibility of time-dependent errors. This will also be essential for the verification of accelerator
programs.

O’Hearn [104] describes the idea of separating resources using separation logic. The main
ideas behind O’Hearn’s approach are ownership and separation: Ownership properties describe
that a code fragment can access only those portions of a state that it owns. Separation properties
describe that at any time during execution the state can be partitioned into parts that are owned
by individual processes and a common part that is protected by mutual exclusion techniques.
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Brookes [26] presents a trace semantics for a language of parallel programs that share access
to mutable data. He introduces a resource-sensitive logic for partial correctness. His logic
allows proofs of parallel programs in which ownership of critical data, such as the right to
access, update, or deallocate a pointer, is transferred dynamically between concurrent processes.
Brookes extends O’Hearn’s work by allowing nested resource declarations and nested parallel
compositions. He also introduces a formal definition of resource contexts.

Vafeiadis [120] presents a new soundness proof for concurrent separation logic in terms of a
standard operational semantics. The proof gives a direct meaning to concurrent separation logic
judgments, which can easily be adapted to accommodate extensions such as permissions and
storable locks, as well as more advanced program logics.

Vafeiadis and Parkinson [121] propose a system that combines separation logic with the
Rely-Guarantee method. They give a natural description of interference using a relation as in
Rely-Guarantee, while reasoning locally as in separation logic.

Gotsman et al. [58] present a resource-oriented program logic that is able to reason about
concurrent heap-manipulating programs with an unbounded number of dynamically allocated
locks and threads. Their logic is inspired by concurrent separation logic. They demonstrate that
the proposed logic allows for local reasoning about programs for which there exists a notion of
dynamic ownership of the heap part using locks and threads. The logic resolves some of the
limitations of separation logic by assuming a bounded number of non-aliased and pre-allocated
locks and threads.

Jacobs et al. [76] present the VeriFast program verifier, which is based on separation logic
approach for the specification and verification of safety properties of pointer-manipulating
imperative programs. The safety properties to be verified are specified as annotations in the
source code, in the form of pre-conditions and post-conditions expressed in separation logic.

Hobor et al. [70] define a modular operational semantics for Concurrent C minor. They
present a concurrent separation logic with first-class locks and threads, and prove its soundness
with respect to the operational semantics. Their Concurrent C minor operational semantics is
designed to connect to Leroy’s optimizing (sequential) C minor compiler [86]. They use modal
logic to build a model that advances time as locks are acquired/released and an oracle machine
to be able reasoning about sequential programs with concurrent communication elements.

Permissions. Separation logic describes the exclusive ownership of parts of the heap. Each
heap cell may be owned by only one thread. This property reduces complexity of assertions
significantly but is not enough in practice. In practice, parts of the heap may safely be shared
between concurrent threads under some conditions. This is the main reason for extending
separation logic with permissions. Similar techniques will also be necessary to reason about
accelerator programs sharing access to a heap location.

Boyland [24] introduces the concept of fractional permissions for checking interference.
This concept permits reads of a shared location with fractional permissions whereas writes
require complete permissions. Intuitively, multiple reads do not conflict while accessing some
shared location. Boyland gives an operational semantics and defines a permission type system.
He proves that checkable parallel constructs do not interfere.

Leino et al. [83] present a verification methodology for concurrent, object-based programs
which enforces the absence of data races and deadlocks. The methodology uses fractional per-
missions, which allow them to support fine-grained locking and multi-object monitor invariants,
sharing and unsharing of objects, and concurrent reading. The methodology is implemented
as a translator from the language Chalice to the verification language Boogie. It has been used

CARP-ICL-RP-004-v1.15 69 ??



CARP

to verify several examples. Chalice is explained from the user prospective in [84]. Boogie is
described in more detail by Barnett et al. [6].

Haack et al. [74, 61] present a program logic for reasoning about multi-threaded Java-like
programs with concurrency primitives such as thread creation, thread joining and re-entrant
object monitors. The logic is based on concurrent separation logic. Concurrent reads are
supported through fractional permissions. In order to distinguish between initial monitor
entrances and monitor reentrances, an auxiliary variable keeps track of the multiset of currently
held monitors.

Heule et al. [68] describe a methodology for supporting fractional permissions while allow-
ing the user to work at the abstract level of read and write permissions. The methodology has
also been implemented in the verification tool Chalice. Two main kinds of permissions are used:
A full permission and a read permission. Read permissions are abstract, i.e., they do not specify
a concrete mathematical fraction.

Bornat et al. [18] add the notion of counting permission, modifying the definition of a
heap: A heap is now a partial map from addresses to values with permissions. While the
fractional permissions model allows permissions to always be split off and combined, the
counting permission method uses a central permissions authority (the main thread) that holds a
source permission, annotated with the number of read permissions that have been split off. The
split-off read permissions cannot be split any further and only a source with no split-off children
can give total read/write/dispose ownership.

Botincan et al. [20, 19] present a method and a tool for proving memory-safety and race-
freedom of multicore programs that use asynchronous memory operations. Their approach
uses separation logic with permissions, and their tool asyncStar automates this method.
The tool targets a C-like core language. They describe possible solutions for problems like
syntactic reasoning about permissions and arrays, integration of numerical abstract domains, and
utilization of an SMT solver. They demonstrate their methods on a double-buffering algorithm
example.

Interval Temporal Logic-Based Verification. Rely-Guarantee and separation logic are not
the only ways to reason about interleaved programs sharing common resources. Interval temporal
logic (ITL) [100] has been recognized as being able to model interleaved behavior and to reason
about steps in the system, by introducing the notion of time. ITL is equipped with the necessary
compositional operators to reason about interleaving.

Schellhorn et al. [116] present a logic that extends ITL with explicit, interleaved programs.
They integrate the logic with higher-order logic, adding recursive procedures and rules to reason
about fairness. They show how rules for Rely-Guarantee reasoning can be derived and outline
the application of some features to verify concurrent programs in practice. One of the crucial
design criteria of their logic is to make interleaving compositional.

The temporal logic and the programming language described in [116] has been directly
implemented in the theorem prover KIV, as explained in [108]. KIV supports the entire design
process from formal specification to verified code. Moreover, it supports functional as well
as state-based modeling. It is to be investigated whether ITL-based verification will also be
appropriate for accelerator programs.

Verification of Concurrent Data Structures. Finally, many of the verification techniques
mentioned above have been used and adapted to reason about common concurrent data structures.
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Hobor and Gherghina [71] develop a concurrent separation logic for pthread-style barriers.
They give a formal characterization of sound barrier definitions and design a Hoare rule in sepa-
ration logic for verifying barrier calls. They have also extended a program verification tool chain
to automatically apply their Hoare rules to concurrent programs using barrier synchronization.
Barrier stages are modeled as finite automata and are build into barrier definition.

Bell et al. [11] formulate an operational semantics and a concurrent separation logic to
reason about multi-threaded programs that communicate asynchronously through channels and
shared memory. They demonstrate how to transform a sequential proof into a parallelized proof
that targets the output of the parallelizing optimization. They use histories in their logic to
overcome limitations in local reasoning and to prove the correctness of parallelized programs in
the presence of asynchronous communication.

There is some ongoing work on formal behavior specification of concurrent data structures
at the University of Twente in the context of the Vercors project1. Zaharieva et al. propose
history-based specifications for verifying concurrent data structures. A combination of JML
and permission-based separation logic, including abstract predicates, is used as a specification
language. This gives an abstract, modular way of specifying the behavior of concurrent queues.

6.3.2 Model Checking Techniques

Model checking [32] has come to denote a set of techniques for analyzing hardware and
software systems through the construction of a finite model of the system and checking of logical
properties of the model. If the model accurately captures system behaviors then properties
established for the model can be inferred for the original system, and bugs in the original system
may be revealed by showing that the model violates corresponding logical properties. Model
exploration is either explicit state, where states are enumerated individually, or symbolic, where
sets of states are represented as logical formulas, typically using binary decision diagrams.
Canonical examples of explicit state and symbolic model checkers are SPIN [73] and SMV [98]
respectively.

We now provide an overview of software model checking techniques, and applications of
model checking to concurrent software. We focus on techniques for analysis of software written
in system-level languages like C, as these techniques are most relevant to the CARP project.
Software model checking has also been applied successfully to higher-level languages; see for
example the Java PathFinder tool [85, 123].

Software Model Checking. Two styles of model checking have been successfully used for
analysis of software source code: bounded model checking and model checking via counterex-
ample guided abstraction refinement.

Bounded model checking [16] involves constructing, from a system description, a logical
formula describing all executions of the system up to a given depth, such that satisfying
assignments to the formula correspond to erroneous behaviors. The resulting logical formula
can be efficiently checked by a state-of-the-art SAT or SMT solver. A popular bounded model
checker for C programs is the CBMC tool [33].

Counterexample-guided abstraction refinement [31] involves constructing a finite-state
abstract model of a software program using an appropriate over-approximating abstraction,
which is usually predicate abstraction [59]. The abstract model is checked using a symbolic

1http://fmt.cs.utwente.nl/research/projects/VerCors/
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model checker, e.g. SMV. If model checking succeeds, the original program is deemed correct,
due to the over-approximating abstraction. Otherwise an abstract counterexample is generated,
and simulated with respect to the original program. This either reveals a bug, or indicates that
the abstraction was too coarse. In the latter case, the abstraction is automatically refined (e.g., by
considering additional predicates, or using existing predicates more precisely), and the process
repeats. The practical success of CEGAR-based model checking was demonstrated by the
SLAM tool from Microsoft Research [3], which has since been integrated into the Windows
device driver development kit. Other notable CEGAR-based model checkers are BLAST [67],
which pioneered the use of lazy abstraction, and SatAbs [34] which uses a SAT solver for
abstraction and refinement.

CEGAR-Based Model Checking for Concurrent Programs. An extension of BLAST for
checking data races in concurrent programs is presented [66]; the MAGIC model checker [29]
uses the CEGAR approach for analyzing concurrent programs where communication between
threads is through message passing.

The SatAbs tool has been extended to support verification of concurrent C programs [47, 45],
achieving scalability in the case of replicated C programs by exploiting symmetry between
threads [99, 124]. This involves model checking finite-state concurrent abstract programs.
For this purpose, the BOOM tool is employed [9], which combines symmetry reduction with
symbolic model checking through the use of counter abstraction [10].

Bounded Model Checking for Concurrent Programs. ESBMC (Efficient SMT-based Con-
text-Bounded Model Checker) [37] is a bounded model checker for concurrent C programs,
based on the CPROVER framework2 (on which CBMC and SatAbs are also built). ESBMC
aims to find bugs in concurrent programs by bounding both search depth and number of thread
context switches. The latter idea, context-bounded verification [101] exploits the empirical
observation that real-world concurrency bugs usually require only a small number of unforced
thread preemptions to manifest, and thus are still detected when search is restricted to paths that
consider no more than a small number of such context switches.

Concurrency Testing Using Model Checking-Based Techniques. Context-bounding, to-
gether with other model checking techniques, notably dynamic partial order reduction [54]
are the basis of CHESS, a concurrency testing tool which finds bugs by enumerating thread
schedules [102].
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7 Applications and Validation Metrics
We conclude the survey with a discussion of the state-of-the-art in key application areas relevant
to the CARP project, as well as performance metrics related to these application areas.

In Section 7.1 we discuss current techniques for accelerating image processing using GPUs.
We follow this with an overview of performance metrics for image processing in Section 7.2.
Finally, in Section 7.3 we discuss state-of-the-art benchmark suites for OpenCL. These areas
provide requisite background for WP7 of CARP, during which the CARP technology will be
validated.

7.1 GPU Acceleration of Image Processing Applications

Computer vision tasks (and image processing tasks in general) are usually computationally
intensive and repetitive, and have soft real-time requirements at the same time. However, partly
because of this repetitiveness, many computer vision operations map efficiently onto the modern
GPU. This efficiency appears not just in speed (although this is more important for the research
community), but in power consumption too, which opens the possibility of the usage of these
algorithms in mobile computing environments.

Importance of Speed. The gain from faster processing speed is threefold:

• Qualitative benefit: It makes it possible to get better accuracy from algorithms that are
already real-time on the CPU by running it on higher resolution or with more iteration.
• Quantitative benefit: It makes it possible to run these algorithms more times in the same

timeframe: for example to track more objects.
• Ability of using new algorithms: It also makes it possible to use algorithms which

previously didn’t fit in the timeframe allowed by the real-time requirements.

The authors of [22] showed that their CPU implementation was capable to track one face
with 12 fps while their GPU implementation was capable to track 6 faces with 28 fps.

Cabido et al. in [5] measured 10x speedup compared to their CPU implementation and with
this computation capacity they exceed the CPU implementation in terms of number of tracked
objects and tracking quality.

In [6] the authors showed 400× speedup compared to their CPU based implementation.
In [32] the estimated speedup varied between 20 and 40.

Source of Parallelism. Most algorithms in Computer Vision are embarrassingly parallel,
which means they usually need little or no effort to separate them into a number of parallel tasks
and tend to require little or no communication of results between these tasks. These two features
makes them ideal to run on the GPU. These features come from the fact that the majority of the
algorithms are part of one or more of the following categories:

• Pixel-level algorithms: These algorithms work on the pixel level and use only local
information, usually only the neighbouring pixels. All the different convolution filters,
edge and corner detectors, template based trackers, color space conversion algorithms,
SVM and neural network based filters belong to this category.
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The author of OpenVIDIA showed the simplicity of these implementations in [10]. In
[34] the authors show how well the various image feature calculations map to the modern
GPU hardware.
• Neural-inspired algorithms: These algorithms are inspired by the inner workings of the

brain, especially the visual cortex. Just like brain cells, these algorithms are highly parallel
with only locally shared information.
• Metaheuristics: Many problems in Computer Vision are formalized as an optimization

problem, and sometimes no direct solving algorithms or convergent iterative methods are
known. In this cases one can try to solve them with the help of metaheuristics. These
methods optimize a problem by iteratively trying to improve a candidate solution with
regard to a given measure of quality.
Some of the classes of the metaheuristics like evolutionary algorithms, swarm intelligence
or stochastic optimizations are evaluating different candidates independently in each
iteration, making these calculations easily parallelizable [22, 5, 32]

Current Technologies. Because of the close relationship the pixel level computer vision
algorithms were the first algorithms which were ran on the GPUs.

• 1st generation: These early implementations used OpenGL Cg or GLSL and the calcula-
tion itself happened in the standard OpenGL pipeline with the help of FBO-s [6, 23, 27]
The creators of GPUCV [12] and OpenVidia [24] used this technology to implement parts
of OpenCV [39] as the de facto standard computer vision library.
• 2nd generation: After its release, the adoption of CUDA was immediate [3, 5, 13, 20,

22, 25, 29, 32, 39, 24]. The adoption of CUDA has not been largely affected by the
newer OpenCL standard, except that library writers usually favor OpenCL because of its
openness [39, 24, 11, 18, 15].

A detailed overview of the CUDA and OpenCL programming models is provided in Sec-
tion 3.4.1.

Future Technologies. Along with current ones, we anticipate that two new technologies are
likely to gain traction: Renderscript and C++ AMP. These technologies are discussed in detail
in Sections 3.4.1 and 3.4.2 respectively.

7.2 Performance Metrics in Image Processing

The comparison of the CPU and GPU architectures can be done through various metrics. There
exist simple algorithms which exploit a special characteristic of each architecture as well as the
performance increase provided by the compiler.

Benchmarking Through Hardware Virtualization. The authors of [1] propose a virtual
environment to make a detailed analysis of the binary code on the GPU architecture. They have
developed GPGPU-sim, which is a clock accurate simulator which supports the CUDA binaries
and can simulate their execution on a GPU.

On the memory side, they consider all four memory types accessible to CUDA warps (a
warp constitutes of 32 threads), the global, local, constant and texture; and implement penalties
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for accessing them. The global memory access is simulated through separate send and receive
interconnection networks.

They implement a round-robin virtual scheduler. The threads are selected in groups and
each group is executed through four clock cycles. If a thread arrives to a branch in the execution,
then the rest of the threads in the warp are paused until the branched execution finishes.

From the hardware point-of-view threads they implement grouping in CTA (Cooperative
Thread Arrays). This approach is hardware based and has benefits in some cases. The threads
from the CTA-s can access a common shared memory and the CTA-s can synchronize between
each other. This means that more CTA-s with a carefully chosen size can saturate the resources
better than a single huge CTA.

Using the GPU simulator the authors/users can obtain a detailed measurement on the
Instruction (SFU, Control Flow, Fused Multiply-Add, ALU operators), the Memory Instruction
Classification (Shared, Texture, Constant, Global, Local), the IPC (Instruction per Clock) and
the Warp Occupancy.

Benchmarking the Energy Efficiency. To this date little research has been conducted to
evaluate the energy efficiency of the GPU for general purpose computation. Even less effort has
been made for compilers/development which would optimize energy the consumption of the
application. These aspects are of paramount importance on embedded devices, especially for
applications that run permanently possibly in the background.

The authors of [14] propose a metric to analyse the energy efficiency of modern GPU
hardware. They launch the applications they would like to profile and sample the power
consumption using an external meter. They attribute two properties to a computation: 1. The
consumed energy W (in Joule) and 2. the computation time t(in s). From these two metrics, one
could define an abstract value, the energy delay (ED) by

ED :=W · t (7.1)

The energy delay is a measure of the efficiency. ED is linear in energy and time, which means
we can improve the efficiency twice by either reducing the computation time (though not the
energy consumption) to half of reduce the required energy to half (calculating for the same time,
but, for example, reducing the occupancy on the GPU SPE cores )

Such benchmarks can be performed on both sequential and parallel implementations, as
well as CPU, GPU, SoC and embedded systems.

Benchmark Using Specialized Algorithms. The authors of [28] propose a set of algorithms
for benchmarking the image processing algorithms on GPU. According to them the main aspects
of GPU execution efficiency are:

• Parallel fraction. Is the fraction of the computation time which is parallelizable. ref.
Gustafsons law
• The ratio of floating-point computation to global memory access. If we consider a simple

linear saturation algorithm q · I. In this case the floating point performance of the processor
is negligible compared to the necessary memory bandwidth, whereas in the convolution
or matrix multiplication the pixels are reused several times, thus stressing the floating
point performance rather than the pure memory bandwidth. Higher this ratio is the better
is the occupancy of the GPU.
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• Per-pixel floating point instructions. The GPU can perform 20× the floating point
instruction per second than CPUs can. Therefore the more instructions are necessary per
pixel higher will be the performance gain of a GPU implementation.
• Per-pixel memory access. The above fact is also true for the memory bandwidth. As the

memory controllers are physically distributed around the cores, the GPU hase 10× higher
pure memory bandwidth than the CPU.
• Branching diversity. Branching can influence significantly the performance of the algo-

rithms. It is crucial, therefore, to eliminate the branches from the binary code wherever
possible. Some branches can be eliminated using the embedded conditional operator, so
it is important for the compiler to automatically recognize and apply such optimizations.
An example operator can contain lots of hand-optimizable branching.
• Task dependency. The image processing algorithm can be divided into several subtasks:

operators. The dependency between the operators is not necessarily sequential. The
compiler should therefore try to recognize the dependency tree of the operators to reduce
the waiting during the execution.

Afterwards, we can measure the efficacy of each aspect by selecting an image processing
application for each metric.

Benchmarks on Handheld GPUs. The authors of [33] considered handheld devices for
image processing. As these devices use two orders of magnitude less power than their desktop
counterparts, it is more difficult to reach to their computation power. Therefore the authors used
OpenGL ES to show, that some image processing applications can be programmed using the
GPU shaders.

As OpenCL is becoming more and more available, we can use the same code to benchmark
embedded and desktop devices. Moreover if the system consists of a GPU and a multi core
CPU, the computational performance can be cumulated as these usually share the same memory.

Parallel Programming Models. The authors [8, 19, 9] evaluate different parallel program-
ming environments. Any given algorithm can be implemented in several programming frame-
works ( programming language / compiler / environment ). There are several domain specific
languages (CUDA, OpenCL, UPC, OpenGL ES) as well as programming environments (Py-
CUDA, PyOpenCL, OpenMP).

The development time can be considerably different using different languages, so this aspect
may be considered in the benchmark of the programs. Also domain specific languages (CUDA,
OpenCL) or language extension (OpenMP) can guide the compiler in the parallelization of the
algorithms. Implementation in several different programming environments can be compared
and the development time can also be benchmarked against the simple compiler-optimized
binary code.

Hardware Profiling. A crucial part of software optimization is identifying bottlenecks. Bot-
tlenecks are parts of the code that saturate a certain aspects of the hardware. In a streaming
application, for example, the network speed can be a bottleneck. This means that even if we
accelerate the algorithm an order of magnitude, the runtime will not decrease, as most of the
time it will be waiting for the network to deliver the data to process. In the aspect of GPU the
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bottleneck can be the branching, the memory speed or, more often, the speed of the PCI bus1.
[4] provides an overview of the standard profiling techniques. The main method is the

CUDA profiler provided by NVidia. This is a statistical profiler. During statistical profiling we
launch the executable, that we would like to analyze. During the execution we stop the system,
and log the place where the system was stopped. It is referred to as collecting the sample. After
some statistical considerations the higher is the proportion of the samples collected in a particular
part of the code (this can be a line in the source code or a particular assembly instruction), the
higher is the proportion of time that the system spends in executing that instruction.

A second way of profiling can be done by modifying the source code of the application.
Typically some modules can be switched off and their output replaced by artificial results. This
way the we can determine how much time is spent in the particular module. This way we can
select the modules of the source code, which influence the most the total running time. Usually
these modules are the best candidates for optimization.

A detailed hardware profiling of an application can consist of statistics for each function A:

• The time that the program have spent in A
• The time that the program have spent in A including the times that the program have spent

in each functions B called from A

T (A) = A+ ∑
A→B

T (B) (7.2)

• The memory bandwidth used in A
• The IPC of A

From this we can determine, whether the given binary occupies the GPU/CPU optimally.

Proposed Benchmarks to Evaluate the CARP Compiler. We can define a base of algo-
rithms each exploiting a particular characteristic of the target architectures. Examples include:

• High parallel fraction operators. morphological opening, convolution are operators which
are embarrassingly parallel so they could be a good candidates to check the parallelization
capabilities of the compiler
• High memory throughput operators. threshold, mean, matrix transposition, histogram are

operators which require few operations, therefore they are likely to saturate the memory
bandwidth
• High IPM (instructions per global memory access). operators as matrix multiplication

require the elements of the image several times, therefore consist of many floating point
operations
• Higher level optimizations. Small Matrix Multiplication. In some cases small matrices

can be regrouped into bigger matrices and we can perform several matrix multiplication
using single matrices. In this case the size of the matrix can be determined using the
hardware characteristics (RAM size/ Cache size).

Note that the energy efficiency profiling is more complex that the above mentioned techniques as
it requires a separate physical device and profiler to be attached to the system that we benchmark.
We can, however implement such benchmark if we get assistance from the hardware vendor.

1The PCI bus connects the GPU with the rest of the system. Before we can process an image, we have to transfer
it from the system RAM to the GPU RAM through the system bus
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7.3 OpenCL Benchmarks

The current benchmarks for OpenCL can be divided into two roughly different segments. One
of which is the scientific computing arena and another is consumer benchmarks.

Dedicated consumer benchmarks tend to report their results as an arbitrary score, bench-
marks developed from actual applications tend to measure either seconds or operations/second,
whichever is more relevant for the application at hand. The aim is to produce a single number to
allow quick comparison between devices, focused more on qualitative rather than quantitative
comparisons. The tests in consumer benchmarks mainly tend to consist of image processing,
raytracing, simple physics simulations and synthetic tests such as Julia fractals and raw memory
bandwidth tests.

Benchmarks originating from the scientific computing arena tend to have a wider array
of tests than consumer benchmarks. Due to popularity of CUDA in scientific computing the
benchmarks usually have support for CUDA devices. Unlike in consumer oriented benchmarks
there is no tendency to make the result marketable by producing a single combined result of all
the tests.

7.3.1 Major OpenCL Benchmark Suites

SHOC: The Scalable Heterogeneous Computing Benchmark Suite. SHOC [37] is an
Open Source benchmark mainly focused for scientific computing. It includes features suitable
for testing clusters of OpenCL devices. The tests are divided into three categories: (1) a set
of simple synthetic performance tests, (2) a set of parallel algorithms such as FFT, sort, graph
traversal and parallel reduction, and (3) two fully fledged applications.

ParBoil Benchmarks. The ParBoil Benchmarks [16, 38] are a suite of Open Source bench-
marks focused on throughput computing applications. The tests range from matrix multiplication
to fully fledged fluid dynamics simulations. As well as OpenCL, all ParBoil benchmarks are
available in CUDA and OpenMP forms.

Rodinia Benchmark Suite. Rodinia [36, 7] is an Open Source benchmark for scientific
computing. It includes tests ranging from simple graph traversal to application specific tasks
such as analysing ultrasound images of a heart. In addition to OpenCL, Rodinia has support for
CUDA and OpenMP.

Rightware Basemark CL. Basemark CL [31] is a commercial benchmark developed by
RIGHT. The tests in Basemark CL are SPH fluid, 2d fluid, FFT waves, Image filters and fractals.
Basemark CL features workloads that stress the OpenCL implementation in a realistic way,
therefore yielding performance measurement data that is objective and relevant. With the help
of OpenCL, it is possible to improve games, applications and user interfaces for instance by
including physics-based animations and game-like elements.

LuxMark. LuxRender [21] is Open Source rendering engine. LuxMark was developed from
their OpenCL accelerated rendering code.
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Kishonti CLBenchmark. CLBenchmark by Kishonti informatics [17] is commercial bench-
mark for desktop devices. The tests include SPH fluid, Raytracing, Optical flow, Image filters
and set of simple algorithms such as bitonic sort and tree traversal.

Bitcoin Hashing. Bitcoin hashing [2] is a popular benchmark for OpenCL; practically all
profitable Bitcoin mining is performed with GPUs using OpenCL. Performance in Bitcoin
hashing is heavily dependent on the integer processing speed of the hardware.

7.3.2 Other Suites Including OpenCL Benchmarks

In addition to the above OpenCL focused benchmarks there are several other tools which include
OpenCL as part of their benchmark set, such as GPU Caps Viewer [26], SiSoftware Sandra [35]
and Phoronix Test Suite [30]. These tests tend to be either simple synthetic benchmarks or
fractals.

Bibliography

[1] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. Analyzing CUDA
workloads using a detailed GPU simulator. 2009 IEEE International Symposium on
Performance Analysis of Systems and Software, pages 163–174, Apr. 2009.

[2] Bitcoin. OpenCL miner. https://en.bitcoin.it/wiki/OpenCL_miner.
[3] M. D. Breitenstein, D. Kuettel, T. Weise, L. van Gool, and H. Pfister. Real-time face pose

estimation from single range images. 2008 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, June 2008.

[4] A. R. Brodtkorb, T. R. Hagen, and M. L. Sæ tra. GPU programming strategies and trends
in GPU computing. Journal of Parallel and Distributed Computing, May 2012.

[5] R. Cabido, A. S. Montemayor, and J. J. Pantrigo. High performance memetic algorithm
particle filter for multiple object tracking on modern GPUs. Soft Computing, 16(2):217–
230, May 2011.

[6] A. C. Campilho and M. S. Kamel, editors. Image Analysis and Recognition, Third
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A Overview of Major Programming
Models
In Section 3.4.2 we presented a brief overview of several major programming models. In this
appendix we provide a comprehensive discussion of each.

A.1 POSIX threads

The POSIX threading API (‘pthreads’) is an IEEE standard and serves as the native thread
API on most UNIX-like systems. It is a pure C API implementing the MPMD model. Some
compilers (including GCC) include a language extension for thread local storage (__thread
keyword).

Motivation. The pthreads API was created as a way to standardize behavior of multi-threaded
programs on POSIX systems. Actual implementation is at the discretion of the individual POSIX
implementation; it is possible to implement pthreads within a single ‘kernel’ thread without
much support from the OS. Threads are desirable on POSIX systems because the alternative
method of providing multiple threads of execution (multiple processes) is very heavyweight.
The POSIX method of creating a new process (the fork() call) causes every aspect of the
existing process (including the entire memory space) to be copied in to the new one. Shared
memory regions can be set up and attached to in multiple processes to achieve similar semantics
to threads, but it is a slow and resource-intensive process. Modern POSIX implementations use
various techniques to optimize fork(), but using threads is still easier for the programmer and
allows better integration of other POSIX semantics such as signals.

Parallel Language. There are no language restrictions for parallel code, which is not demar-
cated in any way from the serial code. Any C function or feature can be used from any thread.
The API can also be used in C++ programs, in which case the same applies. It is possible that
certain libraries may not be thread safe - this is dependent on the library and system in question.
In the case of non-thread safe libraries the programmer is responsible for ensuring that only one
thread calls into the library at a time.

Task Dispatch. New threads are created one at a time via the pthread_create() function
call. The arguments include an arbitrary function pointer indicating the code to be run in the
new thread and a user pointer (void *) which can be used to provide context information to the
new thread. A new thread is created and the function pointer provided is called, with the user
pointer as an argument. This initial function is free to call any other functions in the program. If
the initial function returns, the thread is terminated.

Synchronization. Low-level mutual exclusion primitives are provided by the library in the
form of mutexes (a simple mutual exclusion lock) and condition variables (which allow a thread
to block waiting for a specific signal from another thread). A thread can wait for another thread
to exit with the pthread_join() function.
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Memory Model. Threads have equal access to memory to the main thread. All threads share
a memory space, so changes made on one thread (e.g. memory allocation or mapping a file into
memory) are visible to other threads.

Compilation Model. Parallel code is no different from serial code with regards to compilation.
In general this means it is compiled in advance. However, mechanisms like dlopen() allow
code to be loaded from dynamic libraries at runtime, so a system requiring runtime compilation
could be implemented on top of C/pthreads by compiling into a dynamic library and loading it
at runtime.

Minimum Steps Needed to Run Parallel Code. Although pthreads is a low level API, the
implicit shared instruction set and memory make it easy to get started:

1. Call pthread_create() to launch a new thread executing a named function.

Discussion. pthreads is a low-level API which is well suited to creating multiple threads with
potentially disparate purposes on an SMP system. Other programming models can be supported
by building libraries (and possibly compiler support) on top of pthreads. As the primitive for
creating threads (pthread_create()) creates a single thread, pthreads is not a suitable model
for use on a SPMD-based machine.

pthreads does essentially nothing to help the programmer deal with the complexities of
concurrent programming. The programmer needs to be aware of the requirements for synchro-
nization and deadlock avoidance and must use the primitives supplied by pthreads to build a
program which works correctly. This can lead to complex and frustrating debugging where a
subtle race condition is missed by the programmer and causes sporadic errors.

A.2 OpenMP

OpenMP is maintained by the OpenMP ARB, an independent non-profit corporation composed
of members from various interested parties. OpenMP is a language extension for C and
FORTRAN which allows programmers to use pragmas to indicate parallel subsections of code.
OpenMP is generally implemented on top of a native threading library — pthreads in the case
of UNIX-like systems.

Motivation. OpenMP was originally developed for FORTRAN. Simple directives to indicate
parallel loops are much easier for programmers than having to deal with an explicit threading
library, and in many cases can provide just as much performance improvement, particularly
when the programmers are experts in the problem being solved but not necessarily dealing with
a threading library. OpenMP was an effort to avoid a proliferation of incompatible compiler-
and machine-specific schemes to achieve this.

Parallel Language. Parallel code is written in the same language as serial code. There are
no restrictions on which language features are used by the parallel code. The programmer is
responsible for any synchronization needed or bugs arising from dependencies which prevent
their program working properly.
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Pragmas are a C language feature which are defined to be ignored by compilers which do
not understand them (special comments are used in FORTRAN to similar effect). OpenMP code
can therefore be built with non OpenMP compilers (or with OpenMP features turned off) to
create a serial version of the program.

Using OpenMP can be as simple as putting a single pragma in front of a loop which is to
be parallelized (the iterations of the loop are divided over a number of threads). Additional
control is available such as specifying which variables are shared or private to the thread, how
many threads to use, how to divide up the loop iterations and so on. Used in this way, OpenMP
provides an SPMD model. Alternatively, a block of code can be divided into subsections, one
thread executing each subsection. This is a much more MPMD like approach.

Task Dispatch. When an OpenMP program is compiled, relevant pragmas are turned into
function calls to create additional threads to run the parallelized workload. By default, all
threads synchronize together at the end of a parallel subsection (although this behavior can be
turned off).

Synchronization. OpenMP supports a variety of synchronization options. Within a parallel
block of code, sub-blocks can be marked as ’critical’ (only one thread will execute in the critical
subsection at a time), ’single’ (only a single thread will run the code in the single subsection),
’master’ (only the master thread will execute). Within a parallel block of code, all threads can
be synchronized via a barrier pragma (all threads will wait at the barrier until all threads have
reached it). Parallel blocks can specify reduction variables, for example a loop summing a
series of values can be parallelized, with the runtime adding the totals produced by each thread
together.

Memory Model. OpenMP’s memory model is identical to that of pthreads. OpenMP threads
have equal access to memory to the main thread. Threads share a memory space, so allocations
made by one thread are visible to the others.

Compilation Model. Parallel code is compiled in advance. Usually, OpenMP pragmas are
handled by ‘lowering’ into standard C or FORTRAN at compile time. This consists of putting
parallel blocks into new functions (building a context structure as appropriate to capture any
local variables used from the parent function) and inserting a call to a library function at the
original site. The library function then handles creating the threads to do the actual work. The
lowering can be done by the normal compiler used for serial code if it supports OpenMP, or it
can be done as a preprocessing step.

As for pthreads, it is possible to build additional code at runtime and load it via dlopen()
or equivalent.

Minimum Steps Needed to Run Parallel Code. OpenMP is very easy to get started with:

1. Add #pragma omp parallel for before the for loop which is to be parallelized.

Discussion. OpenMP is a very low overhead way to make code parallel — a single pragma
and compile flag change is enough to parallelize a loop over several CPUs. This is considerably
simpler than manually writing boilerplate code to spawn a thread, work out which iterations the
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thread is to handle, etc. As always, there does need to be inherent parallelism present before
OpenMP can help. For example, if a loop carries dependencies from one iteration to the next it
cannot be parallelized by OpenMP — pragmas can be added, and the OpenMP implementation
will dutifully make it parallel, but the resulting program will not work properly.

Although OpenMP’s capabilities are essentially similar to pthreads’, the parallel loop
pragmas allow a SPMD programming model to be used with less boilerplate code than pthreads
requires. This is very helpful as this is the easiest sort of parallelism for programmers to reason
about, and the lack of boilerplate code removes a potential source of bugs.

A.3 Renderscript

Renderscript was created and is owned by Google as part of their Android platform.

Motivation. Renderscript was designed to plug a gap in the Android application model as
well as specifically addressing parallelism and accelerators. Standard Android applications are
programmed in Java and run on the Dalvik virtual machine. As a virtual machine architecture
it is not ideal for high performance code. Android’s original solution to this problem was to
allow applications to include native code written in C/C++, but this either limits compatibility,
increases complexity or potentially compromises performance as there are a variety of platforms
with varying capabilities the code may have to run on. Renderscript was introduced as a way to
allow applications to include high performance code without making them machine dependent.
It is also designed to integrate well with Dalvik applications.

In addition to its compute features Renderscript also includes graphics rendering functions.
We consider it strictly as a compute acceleration language.

Parallel Language. Parallel code is written in C99 in separate files to the Java serial code.
Use of certain ‘problematic’ features (such as recursion) is not disallowed, but may limit the
devices the parallel code can subsequently be run on. Some extra types are provided (e.g. for
SIMD vectors), and one or two special header pragmas are used to identify the Renderscript
version and identify its classpath for integration with the Java application.

The Android build system automatically generates a set of classes based on the Renderscript
code to allow the Renderscript routines to be controlled and invoked from the serial application
code.

Task Dispatch. Tasks are dispatched by calling a generated function from the Java serial code.
This handles the passing of any parameter values down to the parallel program and causes it to
be run. Functions execute asynchronously so cannot directly return values to the runtime.

The runtime is entirely responsible for selecting the target device. The initial Renderscript
implementation only targeted CPU devices, but it is explicitly designed to target GPUs. Target
device selection can be based on availability or characteristics of the code being invoked (which
can be determined at compile time and matched to any GPU support present at runtime).

Either scalar routines or kernels can be invoked (scalar routines in Renderscript can in turn
invoke kernels). When a kernel is invoked, the domain is based on the input memory allocation
passed to it.
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Synchronization. Renderscript parallel code executes asynchronously, but a memory object
which parallel code has written to will synchronize automatically (wait for parallel code to
complete) when accessed from serial code.

Memory Model. Renderscript uses a split memory model. Any memory to be used in parallel
code must be explicitly allocated from serial code and initialized if necessary. If a memory
object is used by parallel Renderscript code, subsequent attempts to use it from serial code
trigger a synchronization event.

Compilation Model. Renderscript code is compiled to an intermediate representation at
compile time. At run time it translated into machine code for the specific machine it is running
on.

Minimum Steps Needed to Run Parallel Code. Renderscript has some explicit context and
memory management requirements:

1. Create a context.
2. Create memory objects for passing input/output data.
3. Copy input data to memory object.
4. Invoke the kernel.
5. Copy output data from memory object.

Discussion. Renderscript is different from most of the other models considered here because
it is closely integrated with one particular platform, with no hint of portability. Designing from
the ground up, rather than adding bindings for an existing model (OpenCL would be the obvious
candidate) to Android allows for maximum integration in the Android environment but at the
expense of adding yet another dialect of ‘parallel C’ for programmers to deal with. It also makes
life harder for GPU vendors as they need to create explicit Renderscript support rather than
relying on standardized bindings onto an existing API.

It seems likely that the decision to go this way for Renderscript was at least partly motivated
by the political situation between Google (creators of Android) and Apple (creators of OpenCL).

A.4 OpenACC

OpenACC is a maintained by a non-profit corporation very similar to OpenMP. OpenACC
provides an API very similar to OpenMP in approach which allows offload of processing to
accelerators such as GPUs (as opposed to OpenMP which explicitly assumes that all processing
will be undertaken on the host CPU or SMP system).

Motivation. The desire to bring the simplicity of OpenMP to accelerator programming is an
obvious motivation. Either by slightly modifying and extending OpenMP, or using automatic
communication generation and offloading techniques. The best representative of the latter is the
work based on the Cetus compiler framework, aiming to translate OpenMP to CUDA directly.

In parallel, the OpenMP group started a working group with the goal of integrating OpenMP
with accelerators. This working group is making good progress in this direction, but not good
enough to release a specification with the OpenMP name on it. OpenACC was therefore created
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as a way to get something released without having to worry about incompleteness and future
incompatibility with OpenMP, and as a way to get real-world feedback for when the features are
integrated into the next version of OpenMP.

Parallel Language. OpenACC does not use a separate parallel language. The whole program
is written in C, C++ or FORTRAN with pragmas indicating parallel regions. The current
OpenACC specification lists a few restrictions on code that can appear in parallel regions,
it is possible that more will exist in the final version. The OpenACC compiler and runtime
handle the separate compilation and dispatch of parallel code onto the accelerator. Like OpenMP,
OpenACC aims to be “optional” in that a valid OpenACC program should build and run correctly
on a non-OpenACC system.

Task Dispatch. The OpenACC runtime handles dispatch of kernels to the accelerator. The
programmer can specify conditions for dispatch (e.g. total size of computation to be done) which
are evaluated at runtime, and if the conditions fail the loop is performed on the CPU instead.

Synchronization. At present OpenACC does not include explicit operations for synchro-
nization within parallel blocks, but it is likely they will be added in future. OpenACC does
support synchronizing between parallel blocks and the host processor; either the host processor
implicitly waits for a parallel block to complete when it is encountered, or (via an optional async
clause) can opt to explicitly wait at a later point.

Memory Model. One of OpenACC’s main divergences from OpenMP is the memory model.
OpenACC assumes that memory is not necessarily coherent between CPU and GPU. The
programmer can indicate for each variable, array or sub-array whether it needs copying from
host to device before executing the parallel region, copying back after execution, both, or
neither. Alternatively, it is possible to use a ’data construct’ to describe areas which potentially
containing several parallel regions and specify that data is to be copied at the start or end of the
area, and remain on the device between parallel regions. This allows the programmer to avoid
needless extra copies between the device and host.

If the programmer chooses not to include any of the above directives, the runtime will
assume that copies in both directions are needed for all data used in the parallel region. Hence,
although the programmer does not need to include specific commands to copy data, for optimum
performance the programmer still needs to correctly determine and then specify which copies
are to be performed when. However, the default of copying everything always provides a useful
starting point.

Compilation Model. The compilation model is not specified in the OpenACC specification.
Like OpenMP, code is in general present at compile time, but it is down to the details of the com-
piler and runtime implementation how the two cooperate to arrange for compilation of parallel
regions to be performed. It is possible for all code to be compiled in advance, alternatively the
source code for parallel regions could be captured at compile time and then actually compiled at
run time. A third alternative is a compilation to an intermediate representation at compile time,
with final compilation onto the specific accelerator present occurring at runtime.
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Minimum Steps Needed to Run Parallel Code. Although the underlying memory and ex-
ecution model are similar to that of OpenCL, the runtime takes care of practically all of the
housekeeping automatically. Therefore, it is as easy to get started with as OpenMP:

1. Add #pragma acc parallel for before the for loop which is to be parallelized.

Discussion. OpenACC is an interesting attempt to make accelerator programming more
accessible. The relationship between OpenACC and OpenCL is very similar to the relationship
between OpenMP and pthreads; it is not intrinsically any more or less powerful, but allows a
much easier starting point. As with OpenMP, in principle a first attempt at parallelization can
be made with a single pragma, although more pragmas and clauses may be required for best
performance.
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